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3

1 Introduction

Virtual environments (also referred to as virtual worlds) play an important role in
modern society. Intuitively, the term ‘virtual’ may make readers think of virtual
reality games or futuristic movies. However, a virtual environment is generally an
environment that exists in a computer program. The environment can be either a
fictional scene (such as a level in a computer game) or a 3D computer model of a
real-world environment (such as an office building or a train station).

There are many applications in which a virtual environment is inhabited by crowds
of autonomous characters that walk, run, or otherwise move along surfaces. Simu-
lating the movement of these characters in a computer program is called crowd
simulation. Characters are sometimes referred to as (autonomous) agents, par-
ticularly in the field of artificial intelligence (AI) where the emphasis lies on the
intelligent decisions made by each entity. Other possible terms for characters
include robots, entities, pedestrians, and NPCs, depending on the application or
research area at hand. In this thesis, we will use the term ‘characters’ to avoid
confusion.

In the entertainment industry, crowd simulations occur in e.g. computer games
in which non-player characters make the environment appear more lively, movies
in which characters and their trajectories are computer-generated, and strategy
games in which groups of characters should intelligently move to a location
designated by the player.

Crowd simulation is also becoming increasingly important for purposes outside
the area of entertainment. For instance, simulations can be used to predict and
prevent dangerous situations during a crowded event such as a festival, to estimate
how quickly a building can be evacuated in case of an emergency, or to teach
public safety personnel how to interact with crowds of people. In all of these cases,
a simulation is a safe and cost-effective alternative to a real-life setup.

Many of these applications require that the crowd simulation runs in real-time,
i.e. that the behavior of the crowd is generated on the fly, and fast enough to allow
users to interact with the environment and the crowd.

1.1 Complex Real-Time Crowd Navigation

This thesis studies various research problems related to real-time crowd simulation.
In such a crowd simulation, each character should efficiently compute a path to
its goal location, and the characters should smoothly traverse their individual



4

Chapter 1. Introduction

paths while avoiding obstacles and other members of the crowd. To simulate
this behavior for large crowds in real-time, we need efficient data structures that
represent the environment, and efficient algorithms for path planning and for the
other aspects of crowd simulation.

A navigation mesh is a representation of the walkable parts of a virtual environ-
ment for the purpose of efficient navigation. It can serve as a basis for real-time
path planning and crowd simulation. A navigation mesh can be created by hand
(i.e. by letting a designer ‘draw’ the regions in which characters can walk), but
ideally, it should be extracted automatically from a 2D or 3D virtual environment.

In this thesis, we investigate how to create and use navigation meshes for what
we call complex scenarios. One factor that can make a simulation complex is the
environment. If a virtual environment is two-dimensional (or if it can be simplified
to a 2D representation), and if no obstacles are added or removed during the
simulation, then a navigation mesh is relatively easy to construct, and many
solutions for path planning and crowd simulation are available. Figure 1.1 shows
an example of a crowd simulation in a 3D city that can be simplified to 2D.

However, modern applications may feature environments that cannot be repre-
sented in 2D. For instance, the 2D simplification from Figure 1.1b would no longer
be sufficient if we wanted to include the interior of a multi-story building. The
automatic construction of efficient navigation meshes for such environments has
not been researched as much. The full 3D model of an environment is typically
too detailed for the purpose of navigation. Therefore, in this thesis, we will intro-
duce the concepts of walkable environments (WEs) and multi-layered environments
(MLEs) that represent the surfaces on which characters can walk. We will analyze
the properties of WEs and MLEs, and we will present a navigation mesh that can
represent an MLE.

Furthermore, in many applications, obstacles may appear or disappear during
the simulation, such that routes may become available or unavailable over time.
For instance, imagine a vehicle that enters the environment to block a road, or a
fence that is added or removed. A navigation mesh should be able to reflect these
dynamic changes. The navigation mesh presented in this thesis supports real-time
insertions and deletions of dynamic obstacles. These dynamic changes also affect
the way in which characters plan their paths.

The second complicating factor that we study is the crowd itself. We are in-
terested in applications in which each character in the crowd can have its own
size, walking speed, goal location, and personal preferences. A crowd simulation
system and its underlying navigation mesh should support these differences be-
tween characters. Furthermore, the characters in the crowd are expected to plan
paths that can be followed despite the presence of other characters. This can be
particularly challenging if there are many characters in the simulation, i.e. if the
crowd density is high.
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(a) Environment in 3D (b) Crowd simulation in 2D

(c) 3D visualization

Figure 1.1: Example of a crowd simulation in a virtual environment. (a) The original 3D
model of the environment. (b) For crowd simulation purposes, this environment can be
simplified to a 2D representation with polygonal obstacles. Characters in the simulation are
shown as orange disks; we have enlarged these disks for clarity. This figure was generated
using our crowd simulation framework from Chapter 10. (c) The simulated characters can
be visualized as animated 3D models in the original environment [65].
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We emphasize that this thesis focuses on the geometric aspects of real-time crowd
simulations. Next to these geometric aspects, there are at least two other important
simulation components: high-level planning, which concerns the high-level decision-
making of each character, and animation, which enriches the characters with
sophisticated 3D animations (such as in Figure 1.1c).

In most chapters of this thesis, we consider high-level planning and animation
to be out of scope: we assume that each character has already chosen a particular
goal position (but not yet a path towards this goal), and we treat and visualize
characters as disks or cylinders that move along surfaces. In Chapter 10, however,
we will describe the complete set of tasks involved in a crowd simulation, and we
will explain how these components fit together into a generic crowd simulation
framework.

1.2 Thesis Outline per Chapter

This thesis consists of four parts.

Part I introduces concepts that are relevant for the remaining chapters.

• Chapter 2 describes related work on path planning, navigation meshes, and
crowd simulation. It explains why navigation meshes are our concept of
choice for simulating crowds of heterogeneous characters.

• Chapter 3 provides background knowledge on topics that will re-occur in
various other chapters. It focuses on Voronoi diagrams (which are crucial for
our navigation mesh in Part II) and A* search (which we will frequently use
and adapt in Part III).

Part II revolves around navigation meshes: data structures that represent the
walkable areas of a virtual environment for the purpose of path planning and
crowd simulation. We introduce the Explicit Corridor Map (ECM) navigation mesh
and its extensions and operations, and we conduct a comparative study between
the ECM and other state-of-the-art navigation meshes.

• Chapter 4 formally introduces the Explicit Corridor Map for 2D environments.
The definitions and geometric operations of the ECM will be used in other
parts of the thesis as well. We describe and compare multiple implementa-
tions of the ECM construction algorithm, and we measure the efficiency of
various geometric operations in the ECM. We show that the ECM supports
efficient path planning for disk-shaped characters of any radius.

• In Chapter 5, we present the novel problem domain of multi-layered envi-
ronments (MLEs), which consist of multiple connected layers such that each
layer can be handled in 2D. An MLE is a useful simplification of a real-world
3D environment for path planning and crowd simulation purposes. Exam-
ples of such environments include multi-story buildings, train stations, and
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cities with tunnels and bridges. We give an algorithm that computes the
ECM of an MLE, we prove that this algorithm is correct, we describe our
implementation, and we use it to conduct various experiments related to
the multi-layered ECM. We show that most operations from the 2D ECM
(Chapter 4) apply to the multi-layered extension as well.

• Chapter 6 extends the ECM to dynamic environments in which polygonal
obstacles can appear or disappear at run-time. Practical examples include a
vehicle that is blocking an alley, or a fence or wall that is removed to create
a new passage. We show how to efficiently update the ECM in response to
such dynamic events. This enables path planning and crowd simulation in
dynamic environments.

• In Chapter 7, we perform the first comparative study of navigation meshes.
Using both a theoretical analysis and quantitative metrics, we compare
various state-of-the-art navigation meshes, including the ECM. The goal
of this chapter is not to expose which navigation mesh is ‘the best’ for a
particular environment, but to propose a way to objectively measure the
quality of a navigation mesh, and to set a new standard for experimental
research in this area. We use our results to identify the most interesting
directions for future work.

Part III presents novel path planning and crowd simulation algorithms for navi-
gation meshes. While our implementations of these algorithms are based on the
ECM, we describe the algorithms in an abstract way, such that they can be applied
to other navigation meshes as well.

• In Chapter 8, we consider re-planning of paths in dynamic navigation meshes,
such as the dynamic ECM from Chapter 6. When a dynamic event has
occurred, the path of a character may have become incorrect or suboptimal.
We present an algorithm that lets a character efficiently re-plan a new optimal
path. The algorithm is more memory-friendly than existing re-planning
algorithms, which are typically designed for single characters or for other
categories of motion planning. Therefore, our algorithm can be used for
real-time crowd simulation in dynamic environments.

• Chapter 9 shows how the real-world concept of crowd density can be in-
cluded in a navigation mesh. Characters in a crowd simulation can use this
information to plan density-aware paths. We show that this leads to more
variety among characters, and that it can improve the flow of a crowd. This
behavior is emergent: a crowd-wide effect follows from the individual choices
of each character.

• Chapter 10 proposes a generic multi-level framework that summarizes how
crowd simulation software can be structured. This framework subdivides the
complex problem of crowd simulation into more manageable subproblems.
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We describe our own implementation of such a framework; this implementa-
tion is based on the ECM and has been used for all experiments in this thesis.
We also give more insight in the software’s architecture and performance.
Our ECM framework can simulate tens of thousands of heterogeneous char-
acters in real-time. It has been successfully used to perform simulations of
various real-life events, such as the crowd flow during the Grand Départ of
the Tour de France in Utrecht in 2015.

Finally, Part IV concludes the thesis.

• Chapter 11 summarizes the most important conclusions and contributions
from each chapter.

• In Chapter 12, we discuss the limitations of the work in this thesis, and we
identify multiple important topics for future work on navigation meshes and
crowd simulation.

1.3 Contributions

As described in the previous section, the chapters of Parts II and III each have their
own contributions in different aspects. To summarize this further, the main overall
contributions of this thesis are the following:

• We define the domains of walkable environments (WEs) and multi-layered
environments (MLEs), which represent a 3D environment for path planning
and crowd simulation. (Chapter 5)

• We show how to compute the medial axis and the ECM for an MLE. As such,
we present the first navigation mesh that supports path planning for disks of
any size in a multi-layered environment. (Chapter 5)

• We show how the ECM can be updated in real-time when obstacles are added
or removed. (Chapter 6)

• We introduce definitions and metrics that set a new standard for analyzing
and comparing navigation meshes in 2D and 3D. Our comparative study can
be used to focus future research. (Chapter 7)

• We present an algorithm that enables efficient re-planning of paths in dy-
namically changing environments. The algorithm is memory-friendly and
suitable for real-time crowd simulation. (Chapter 8)

• We use crowd density information to let the individual route choices of each
character improve the overall crowd simulation. (Chapter 9)

• We describe a generic framework that subdivides crowd simulation into
modular components. We present an implementation of this framework that
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combines many topics from this thesis. The implementation can simulate
large crowds of characters with individual sizes and properties in real-time.
(Chapter 10)

Implementations of our data structures and algorithms form an important compo-
nent of this thesis. Many chapters contain a section with implementation details
and experiments to show that we can obtain efficient, robust, or visually pleasing
results. In short, we show that our concepts and implementations can be used to
simulate navigation for characters and crowds in complex virtual environments in
real-time.

We note in advance that all experiments in this thesis have been performed
using the same hardware: a Windows 7 PC with a 3.20 GHz Intel i7-3930K CPU,
an NVIDIA GeForce GTX 680 GPU, and 16 GB of RAM. All source code has been
compiled in Visual Studio 2013. This ensures consistency between the results of
all chapters.



10

Chapter 1. Introduction



112 Related Work

The main chapters of this thesis are all related to path planning, navigation meshes,
or crowd simulation. Therefore, we now provide an overview of the related work in
these areas. We focus on the work that is related to multiple chapters of the thesis.
Any related work that is highly specific to a particular subtopic will be treated
in the appropriate chapter (e.g. dynamic environments in Chapter 6, dynamic
re-planning in Chapter 8, and crowd density in Chapter 9). Also, Chapter 3 will
provide more details on Voronoi diagrams and A* search, two concepts on which
various chapters of this thesis are strongly based.

2.1 Motion and Path Planning

The problem of traditional motion planning originates from robotics research. In
motion planning, a robot needs to compute a collision-free trajectory from one
configuration to another [91, 92]. For instance, for a robot arm with rotating
joints, a configuration can be represented by a set of joint angles. The number of
degrees of freedom for the robot determines the complexity of a configuration. The
configuration space C is the set of all configurations [100]; it can be subdivided
into collision-free configurations in which the robot does not touch any obstacles
(Cfree), and colliding configurations in which it does (Cobs). The configuration space
is often different from the workspaceW in which the problem is embedded (which
is typically R2 or R3).

High-dimensional configuration spaces, such as for a detailed humanoid robot
that moves through a 3D workspace, are typically too complex to represent in an
exact manner. Instead, a common solution for motion planning is to represent the
configuration space in a sampling-based manner. The idea behind this approach is to
sample the configuration space and build a roadmap that connects the samples that
are collision-free, until the start and goal configuration have been connected. This
roadmap is a simplified representation of Cfree. Famous examples of such techniques
are Probabilistic Roadmaps (PRMs) [79] and Rapidly-Exploring Random Trees
(RRTs) [88]. Although parts of a roadmap could be re-used in multiple queries,
RRTs are typically designed for ‘single-query’ problems for a particular start and
goal configuration.

In crowd simulations, the virtual environment (i.e. the workspace W) is often
three-dimensional, such as in Figure 1.1a. However, characters are constrained
to walkable surfaces. In this thesis, we will refer to these walkable surfaces as
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Efree

Eobs

(a) 2D environment

Cfree

Cobs

r

(b) Configuration space (c) Bitangent visibility graph

Figure 2.1: (a) A simple 2D environment. Polygonal obstacles and the boundary form the
obstacle space Eobs (shown in gray). The remainder is the free space Efree (shown in white).
(b) For a disk (shown in orange) with radius r, the configuration space can be computed by
a Minkowski sum that inflates all obstacles by a disk with radius r. The dark gray and light
gray areas form Cobs. (c) The bitangent visibility graph of the original obstacles is shown in
black. This graph can be used to plan shortest paths for a point character.

the free space Efree. In many environments, the surfaces of Efree can be projected
onto a common ground plane P without causing overlap. This projection of Efree

onto P is a 2D subset of the plane with polygonal obstacles, or (equivalently) a
2D polygon with holes. We will refer to these obstacles or holes as the obstacle
space Eobs. A simple example of Efree and Eobs is shown in Figure 2.1a. If height
differences along surfaces can be ignored during path planning, then characters
essentially plan their paths in this projected version of Efree.

For now, we assume that Efree has been projected onto P , i.e. that it is two-
dimensional. In Section 2.3, we will extend the discussion to multi-layered envi-
ronments.

To allow simulations of large crowds, an individual character is often represented
by a disk. For a disk-shaped character of radius r, the configuration space C can
be obtained by computing a Minkowski sum that inflates the obstacles in Efree by r.
This is illustrated in Figure 2.1b. By using Minkowski sums, planning a path for
the character inW can be reduced to planning a path for a point in C [91, 92].

Our discussion will now focus on path planning for points; each concept can
be extended to disks of a particular radius by applying a Minkowski sum first.
However, note that the configuration space C is different for each distinct character
radius. In this thesis, we will instead present a navigation mesh that can be used
to plan paths for characters of different sizes.

To plan a shortest path for a point in a 2D configuration space C, a shortest-path
map [53] describes how all points in Cfree can be reached from a particular query
point. A visibility graph [35] can be used to plan shortest paths between arbitrary
pairs of points in Cfree. The visibility graph contains an edge for each pair of
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obstacle vertices that are mutually visible, i.e. each pair of obstacle vertices (v, w)

for which the line segment vw does not intersect any other obstacles.
A bitangent visibility graph is a visibility graph from which all edges that are

not needed for shortest-path queries have been removed. Figure 2.1c shows
an example. For a configuration space with n obstacle vertices, both versions
of the visibility graph have O(n2) edges and can be computed in O(n2) time.
The Visibility-Voronoi Complex [161] is an extension that implicitly encodes the
visibility graph of Efree for all disk sizes. It can be constructed in O(n2 log n) time;
it can generate the visibility graph for a particular disk radius in O(n log n) time.

In a real-time crowd simulation, it is important that characters can plan their paths
efficiently. For such applications, a visibility graph is too complex; instead, it is
common to use a less complex graph that may not always yield the shortest path.
Such a graph for path planning on surfaces is sometimes called a waypoint graph.

However, purely graph-based approaches are generally not ideal for crowd
simulation: characters would need to follow the edges of the graph exactly (which
leads to unnatural motion and more collisions between characters), or they would
have to perform expensive geometric tests to check how they can deviate from
an edge. This deviation is necessary for allowing e.g. collision avoidance and
coordination in groups [151], which are crucial elements for simulating crowds.
This motivates the need for different representations of 2D environments.

2.2 Navigation Meshes in 2D Environments

There are several ways to automatically subdivide the free space Efree into connected
polygonal areas. Snook [137] and Tozour [156] were among the first to use the
term navigation mesh for such a subdivision, which has now become a common
term in the area of path planning and crowd simulation.

Part II of this thesis revolves entirely around navigation meshes. Chapters 4
to 6 present the Explicit Corridor Map (ECM) navigation mesh and its geometric
operations and extensions. Chapter 7 compares the ECM to other state-of-the-art
navigation meshes.

2D spatial subdivisions are well-described in various books on motion planning
[91, 92], but they are also studied in computational geometry [5, 7] because
they have many other applications besides path planning. The term ‘navigation
mesh’ essentially denotes a spatial subdivision that is used for navigation purposes.
One example of a 2D spatial subdivision is the trapezoidal decomposition (or
trapezoidal map), which subdivides Efree into vertical slabs at obstacle vertices
(Figure 2.2a). Another example is a triangulation, which subdivides Efree into
triangles such that all triangle vertices are also obstacle vertices (Figure 2.2b).
The constrained Delaunay triangulation is a specific triangulation in which the
triangles have special geometric properties [5].
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(a) Trapezoidal map (b) Triangulation (c) Grid

Figure 2.2: Examples of 2D spatial subdivisions. The boundaries of regions are shown in
light blue. The dual graph is shown in orange. In the right image, the grid cells that are
(partly) covered by an obstacle are shown in light gray.

The dual graph of a navigation mesh contains a vertex for each polygonal
region and an edge for each pair of connected regions. The dual graph is also
displayed in the examples of Figure 2.1. Characters can use a search algorithm
such as Dijkstra’s algorithm [26] or A* [45] to find an optimal path through this
dual graph. This path corresponds to a sequence of polygonal regions to move
through, such that characters can use the available space to locally adjust their
movements during the simulation. As such, navigation meshes are more flexible
for crowd simulation than graphs.

Although all 2D subdivisions can serve as navigation meshes, researchers have also
focused on creating navigation meshes with particular advantages for the purpose
of path planning or crowd simulation [33, 43, 67, 112, 156]. Such advantages
can include fast and robust construction algorithms, or a small number of regions,
which implies a small dual graph and therefore efficient path planning.

Some navigation meshes support path planning for disks of any radius, in con-
trast to the ‘Minkowski sum’ approach that assumes a particular radius beforehand.
Two notable examples are the Explicit Corridor Map (ECM) [33], on which the
majority of this thesis is based, and the Local Clearance Triangulation (LCT) by
Kallmann [67]. In Chapter 7, we will compare the ECM and the LCT theoretically
and experimentally. Oliva and Pelechano have investigated path planning for disks
in other navigation meshes [113].

An alternative option is to construct a grid that subdivides the environment into
regular cells, such as in Figure 2.2c. Grids are a popular choice for path planning:
they are easy to implement and well-studied by researchers (see e.g. [15, 32, 85,
95, 139]). However, because a grid only approximates the geometry of Efree, grids
tend to have resolution problems: a coarse grid (with few cells) does not capture
the environment’s details, whereas a fine grid (with many cells) quickly becomes
too costly to store and query. To account for this, there are ways to use an ‘adaptive’
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grid resolution that varies throughout the environment [32]. Similarly, a quadtree
subdivides Efree into squares that get gradually smaller wherever more detail is
required, up to a desired level of precision [7]. Still, a grid-like representation of
Efree is never perfect if the obstacles are not axis-aligned.

2.3 Navigation Meshes in 3D Environments

Up until now, we have only discussed virtual environments for which the free
space Efree can be projected onto a common plane. Creating a navigation mesh
is considerably more complex if the environment cannot be simplified to 2D. For
such environments, the navigation mesh is sometimes constructed by hand (e.g. by
level designers, in the case of computer games), but this process is time-consuming
and subject to human error.

Therefore, increasingly more research is being dedicated to the automatic
creation of navigation meshes for arbitrary 3D environments. A 3D environment
can contain various types of geometry such as floors, ceilings, walls, and staircases.
Figure 2.3a shows an example. To construct a navigation mesh for such an
environment, it is common to first extract the walkable surfaces from the 3D
geometry through a filtering process, while assuming that the environment has a
consistent direction of gravity. The result of this filtering process is the free space
Efree of the environment. We will also refer to it as a walkable environment (WE);
an example of a WE is illustrated in Figure 2.3b. We will define WEs more formally
in Chapter 5.

Many navigation mesh techniques obtain an approximation of Efree by discretizing
the 3D environment into traversable and non-traversable cubes, or voxels. An early
example by Pettré [121] supports arbitrary character sizes and represents Efree

by using overlapping disks. The Recast Navigation toolkit by Mononen [102] is
robust and very popular in the computer games industry [158]; it includes many
parameters, such as a fixed character radius that is subtracted from Efree during
the construction. The NEOGEN method by Oliva and Pelechano [114] uses voxels
to subdivide Efree into 2D components; it then uses an exact algorithm for each
component. We will explain these methods in more detail in Chapter 7, in which
we will conduct a comparative study of navigation meshes.

Voxel-based methods can handle arbitrary 3D geometry: the discretization into
voxels automatically resolves issues caused by e.g. intersecting polygons. However,
a disadvantage is that these methods are less scalable to physically large envi-
ronments: such environments require many voxels to obtain sufficient precision,
which affects the method’s construction time and memory usage. Therefore, exact
alternatives to 3D filtering are also being investigated [123].

For many applications, it is useful to subdivide the walkable environment into
layers such that each layer can be treated as a 2D problem. We will refer to such
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(a) 3D environment (b) WE (c) MLE

Figure 2.3: (a) A 3D environment is a collection of polygons in 3D. (b) A walkable
environment (WE) is a set of polygons along which characters can walk. We also refer to
this as the free space Efree. (c) A multi-layered environment (MLE) is a subdivision of the
WE into 2D layers. Connections between layers are shown as red line segments.

a subdivision as a multi-layered environment (MLE). An example is displayed in
Figure 2.3c. An MLE representation enables the use of exact navigation mesh
algorithms: we can apply a 2D algorithm for each layer and then connect the
layers appropriately. In Chapter 5, we define MLEs more formally and we extend
the Explicit Corridor Map to MLEs.

There are several ways to obtain an MLE from a WE. Oliva and Pelechano
use voxelization in their NEOGEN method [114], Deusdado et al. have used
rendering techniques that assume certain properties such as axis-alignment [24],
and Whiting et al. have shown how to extract layers from a CAD drawing [162].
For an arbitrary WE represented by a triangle mesh, Hillebrand has proven that
obtaining an optimal MLE (with a minimum number of connections) is NP-hard in
the number of triangles [54], but he has shown that good results can be obtained
using heuristics [55].

Thus, there are currently two main categories of navigation mesh construction
algorithms for 3D environments: voxel-based methods that discretize the environ-
ment and that can handle arbitrary 3D geometry, and exact methods that require
the environment to be pre-processed into a 2D or multi-layered description of the
free space. In Chapter 7, we will compare navigation meshes of both categories.

Researchers have also investigated navigation meshes for other types of geometry
or character movement. An environment can be subdivided into 3D volumes to
encode height differences and variable vertical clearance [42, 90]. Alternatively,
one could perform crowd simulations on arbitrary surfaces with no consistent
direction of gravity [10, 127]. However, in that domain, the algorithms are less
mature, and concepts such as path planning and collision avoidance are more
computationally expensive. Other methods allow characters to jump between
surfaces by either checking for jumping possibilities on the fly [98] or annotating
a navigation mesh with jump links beforehand [16].

In this thesis, we will not look into such extensions. We will focus only on the
walkable space of 2D environments and multi-layered environments.
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2.4 Crowd Simulation

Navigation meshes are useful for simulating crowds of virtual characters with
individual properties and goals. Crowd simulation is a large research field with
many components including path planning, collision avoidance between characters,
visualization, animation, and the evaluation of realism. Several books and articles
exist that give good overviews of this field [3, 27, 69, 72, 119, 146, 163]. We will
give a short summary of the most relevant topics for this thesis.

2.4.1 Navigation Meshes: Global and Local Planning

As explained, to plan a path in a navigation mesh, a character first plans a path
through the dual graph of the mesh (Figure 2.4a). Within the corresponding
sequence of regions, sometimes referred to as a corridor, the character can com-
pute an indicative route: a rough indication of the character’s desired trajectory
(Figure 2.4b). In this thesis, we use the term ‘path’ for a sequence of edges in the
graph, and the term ‘route’ or ‘indicative route’ for an actual curve through the
navigation mesh. We refer to the process of computing a path and an indicative
route as global planning.

During the simulation, an indicative route can be traversed smoothly in real-
time [62, 74]. While traversing this route, a character can locally avoid collisions
with other characters (Figure 2.4c). Developing intelligent collision-avoidance
algorithms is an active research topic; most of these algorithms either use forces
[46, 118, 126] or velocity selection [9, 76, 105]. In particular, characters are
usually not modelled as obstacles in the navigation mesh because this would
require many complex update operations in each simulation step. Next to collision
avoidance, other local algorithms can be used to model small social groups of
characters [77, 87].

Local behavior can also be modelled by using a grid. For example, Narain et
al. [108] have used a grid to model dense crowds that compress and decompress
fluently. A related concept is a cellular automaton: a grid representation of the
environment in which a character makes local decisions based on its surrounding
grid cells [99, 166]. However, grid-based rules may result in sudden changes in
behavior when characters move to different cells. Moreover, as discussed earlier,
grid representations do not scale well to large or detailed environments.

A disadvantage of treating global and local planning separately is that an indicative
route may be difficult to follow in practice due to local obstacles. For example,
clusters of characters might be blocking the way. This tends to happen more often
if the crowd is large and dense. To improve crowd coordination at high densities,
one can use information about the crowd’s distribution in the global planning
phase [73, 75] or at a local level [36]. Chapter 9 will present an algorithm that
can plan a density-aware global path in a navigation mesh, and it will show how
to use this concept in a crowd simulation.



18

Chapter 2. Related Work

s

g

(a) Path in dual graph

s

g

(b) Indicative route (c) Collision avoidance

Figure 2.4: Path planning in a navigation mesh. (a) The dual graph of the navigation mesh
is shown in orange and black. Given two query points s and g (shown in red), we compute
a path (shown in black) through this dual graph. (b) The path corresponds to a sequence
of navigation mesh regions (highlighted in blue). Within these regions, we can compute an
indicative route (the blue curve). (c) During the simulation, the character (orange disk)
follows the indicative route while using the corridor to avoid other characters (red disks).

In Chapter 10, we will present a generic crowd simulation framework in which
these components can be combined, and we will describe our own implementation
of such a framework that uses the Explicit Corridor Map navigation mesh. The
Menge crowd simulation framework by Curtis et al. is based on similar principles
[21].

2.4.2 Other Methods

A different category of crowd simulation algorithms aims to unify the global
and local planning levels by defining a potential field: a grid representation of the
environment that stores the optimal walking direction in each cell. These directions
are updated in real-time in response to the crowd’s movement [117, 157].

Potential fields can efficiently model flows of dense crowds in which many
characters share the same goals and properties. Unlike in the approaches that
separate global and local planning, characters will always move in an optimal di-
rection instead of following their individual paths. However, this is less appropriate
whenever the behavior of individual characters becomes important. For instance,
each goal region typically requires its own potential field. For simulating large
heterogeneous crowds in which each character has different properties, potential
fields are not scalable, and navigation meshes with local collision avoidance are
preferred.

Other research focuses more on the artificial intelligence of individual characters
[58, 116, 132, 165]. In their models, characters can make high-level plans (e.g.
‘go to the train station, buy a train ticket, and enter the train’) based on semantic
information in the environment.
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In Chapter 10, we will treat high-level planning and character animation as
separate levels in a generic five-level crowd simulation framework. As mentioned
in Chapter 1, this thesis does not focus on these aspects of path planning and
crowd simulation. We will therefore not discuss more related work on animation
or high-level planning.
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3 Preliminaries

In this chapter, we briefly discuss fundamental concepts that will be used through-
out this thesis. We describe the Voronoi diagram, the medial axis, and the A*
search algorithm. These descriptions should provide readers with the background
knowledge required for the remaining chapters.

3.1 Voronoi Diagrams and the Medial Axis

The Voronoi diagram (VD) is a fundamental geometric data structure with many
applications. We describe the VD in this chapter because it forms the basis of our
Explicit Corridor Map (ECM) navigation mesh, which is central to many chapters
in Part II of the thesis. In particular, our algorithms for the multi-layered ECM
(Chapter 5) and for dynamic updates (Chapter 6) require insight in the VD.

Excellent overviews of the Voronoi diagram exist, such as the books by Okabe
et al. [111] and Aurenhammer et al. [5]. Most of the results mentioned in this
section can also be found in these books.

For a planar set of point sites, the VD is a subdivision of the plane into cells such
that all points in a cell have the same nearest site. An example of a VD is shown in
Figure 3.1a. The Voronoi diagram induces a graph. Its edges are parts of bisectors:
line segments or half-lines on which every point is equidistant to two sites. These
bisectors meet at vertices that are equidistant to at least three sites.

The dual graph of a Voronoi diagram has a vertex for each site and an edge for
each pair of sites that share a Voronoi edge. This graph is known as the Delaunay
triangulation (DT); in the design and analysis of algorithms, the VD and the DT
are often interchangeable [7].

The VD can be extended to handle line segments and polygons as sites. This
version is sometimes called the generalized Voronoi diagram or GVD [33, 94]. The
edges of a GVD consist of line segments and parabolic arcs, and degree-2 vertices
occur when a bisector changes its shape, i.e. when the closest point on a nearest
site changes between a vertex and an edge of that site. For a set of interior-disjoint
line segments with n distinct endpoints, the GVD has O(n) edges and vertices. An
example is shown in Figure 3.1b.

Unfortunately, there are multiple definitions of the GVD, differing mostly in
how they handle site vertices shared by multiple sites. The term ‘generalized
Voronoi diagram’ is also used for other generalizations of the VD [111].
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(a) Voronoi diagram (b) GVD (c) Medial axis

Figure 3.1: (a) The Voronoi diagram (shown in blue) of a set of point sites (shown in gray),
clipped to a bounding box. Each edge in the Voronoi diagram is a line segment. (b) The
generalized Voronoi diagram (GVD) for line segment sites can also contain parabolic arcs
as edges. In this figure, the edges of the bounding box are sites as well. (c) The medial axis
of a polygon with holes (or an environment with obstacles) is a subset of the edges of the
line segment GVD. It is the basis for the ECM navigation mesh used throughout this thesis.

There are multiple ways to compute a (generalized) Voronoi diagram in O(n log n)

time, including a plane sweep algorithm by Fortune [30], a divide-and-conquer
approach by Shamos and Hoey [131], and (randomized) incremental construction
by Green and Sibson [39]. In practice, it is challenging to compute the Voronoi
diagram in a numerically robust way, especially when using imprecise floating-point
numbers. Various researchers have discussed this problem of numerical robust-
ness (e.g. [49, 59, 143]). Popular modern implementations of GVD construction
algorithms include Vroni [48] and components of Boost [14] and CGAL [17]. The
Boost implementation is based on Fortune’s plane sweep algorithm; Vroni and
CGAL use incremental construction. Alternatively, an approximation of the GVD
can be computed using graphics hardware [57, 142].

A data structure closely related to the (generalized) Voronoi diagram is the medial
axis (MA). Several definitions of the MA exist; most of them are based on 2D
polygons with or without holes [12, 20, 93, 124, 164]. Informally, the medial axis
of a polygon P is a subset of the GVD of P ’s boundary segments. Definitions of the
MA mainly differ in their choice of which edges to prune from the GVD.

In Section 4.2.2, we will give our own definition of the medial axis to avoid
confusion throughout the rest of the thesis. The example in Figure 3.1c is based
on this definition as well.

3.2 A* Search

Throughout various chapters of this thesis, we will refer to the A* search algorithm
[45] that is often used to find an optimal path in a graph. It can be seen as a
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variant of Dijkstra’s shortest-path algorithm [26] that is extended to steer the
search towards a particular goal.

3.2.1 Overview

Let G = (V, E) be an undirected graph in which each edge in E is denoted by a pair
of vertices (V,W ). Let c(V,W ) be the traversal cost of an edge (V,W ). We assume
that all edge costs are non-negative, to ensure that optimal paths are well-defined.
The A* algorithm can also be applied to directed graphs, but we will focus on
undirected graphs for simplicity.

A* finds a path through a graph from a start vertex S ∈ V to a goal vertex G ∈ V
by performing best-first search. Starting at S, the algorithm iteratively ‘expands’
the vertex V for which the sum g(V ) + h(V ) is lowest. Here, g(V ) is the total
cost of the best discovered path from S to V so far, and h(V ) is a heuristic that
estimates the remaining cost of the optimal path from V to G.

To find the most promising vertex at all times, the vertices that are candidates
for expansion are stored in an open list, sorted by their values of g + h. Initially,
this list contains only S, but whenever a vertex is expanded, its adjacent vertices
will be added to the open list as well.

If the function h is admissible (i.e. if it never overestimates the optimal path
cost for any vertex), then A* computes an optimal path. If h is also consistent (i.e.
if h(G) = 0 and the decrease in h is never larger than the increase in g), then
the best path from S to a vertex V is known by the time V is expanded. In that
case, vertices never need to be expanded more than once, which allows us to
store expanded vertices in a closed list to speed up the algorithm. All consistent
heuristics are admissible, but not all admissible heuristics are consistent.

3.2.2 Pseudocode

For completeness, we give the pseudocode of A* in Algorithm 3.1. This will be
particularly useful for Chapters 8 and 9 in which variants of the A* algorithm will
be presented. In Algorithm 3.1, all elements related to the closed list are shown in
gray to indicate that the use of a closed list is optional.

In this version of A*, each vertex V has a parent pointer that denotes the vertex
preceding V on the best path to V found so far. As soon as the goal vertex G is
reached, we trace the final path back to the start vertex S by iteratively following
these parent pointers. This approach only works if there is at most one edge
between any pair of vertices, i.e. if a vertex pair (V,W ) denotes a unique edge. If
the graph does not meet this constraint, there are at least three simple solutions:

(a) For each vertex pair (V,W ), only use the edge between V and W that has the
lowest cost.

(b) Extend the parent pointers such that they include information about the
specific edge that has been chosen.
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(c) Extend the graph: for each pair of vertices (V,W ) with two edges between V
and W , add an extra vertex W ′ at the position of W , connect one of the two
edges to W ′ instead of W , and add a zero-length edge (W,W ′). This solution
is used in our implementation of the Explicit Corridor Map.

Algorithm 3.1: A*(S,G)
1: g(S)← 0, S.parent← NULL

2: OPEN← {S}, CLOSED← ∅
3: while OPEN 6= ∅
4: V ← argminV ′∈OPEN{g(V ′) + h(V ′)}
5: Remove V from OPEN
6: Add V to CLOSED
7: if V = G

8: return the path from S to G via parent pointers
9: for each edge (V,W )

10: if W ∈ CLOSED
11: continue
12: if g(V ) + c(V,W ) < g(W )

13: g(W )← g(V ) + c(V,W )

14: W.parent← V

15: Insert or update W in OPEN

16: return NULL

3.2.3 A* in Grids and Navigation Meshes

The A* algorithm is often explained using grids as examples because grids are easy
to understand and to implement [95]. Also, many optimizations and variants of
A* have been designed specifically for grids [15, 32], or they have been explained
in terms of grids in their original publications [85, 86, 97]. A* therefore tends to
be mistaken for a grid-based path planning algorithm, but it is defined for graphs
in general.

For navigation meshes, the graph that is used for path planning is embedded in
R3. Therefore, its edge costs are often distance-based, e.g. the cost of an edge is
equal to its curve length. Furthermore, because all regions of the navigation mesh
are sufficiently flat to walk on, it is common to use the curve length of the edge
projected onto the ground plane.

Likewise, the heuristic function h is often implemented as the 2D Euclidean
distance to the goal; it is easy to show that this is a consistent and admissible
function. This ensures that the A* algorithm computes a shortest path through the
graph.
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Alternatively, one can use other types of non-negative edge costs to obtain
paths that are optimal based on other criteria. For instance, in Chapter 9 we will
map crowd density information onto the edges to let characters prefer routes that
are less crowded.
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PART II

Navigation Meshes
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4 The Explicit Corridor Map
in 2D Environments

In this chapter, we describe the Explicit Corridor Map (ECM) navigation mesh for
2D environments, and we show how the ECM can be used for flexible and efficient
path planning and crowd simulation.

This chapter is based on the following publications:

• W. van Toll, A.F. Cook IV, M.J. van Kreveld, and R. Geraerts. The Explicit
Corridor Map: A medial axis-based navigation mesh for multi-layered envi-
ronments. arXiv:1701.05141, 2017. In submission to a journal. [148]

• W. van Toll, A.F. Cook IV, M.J. van Kreveld, and R. Geraerts. The Explicit
Corridor Map: Using the medial axis for real-time path planning and crowd
simulation. In International Computational Geometry Multimedia Exposition,
pages 70:1–70:5, 2016. [147]

• W. van Toll, N. Jaklin, and R. Geraerts. Towards believable crowds: A generic
multi-level framework for agent navigation. In ASCI.OPEN / ICT.OPEN (ASCI
track), 2015. [151]

4.1 Introduction

In Part I of this thesis, we explained that path planning and crowd simulation
are important research topics with many useful applications. A navigation mesh
efficiently subdivides the walkable space of a virtual environment into polygonal
cells. As such, it is more flexible for crowd simulation than a graph, and it is a
more efficient representation of the environment than a grid.

This chapter presents the Explicit Corridor Map (ECM), a navigation mesh that
forms the basis of many other chapters in this thesis. The ECM is the medial axis
of a 2D environment annotated with nearest-obstacle information. Similarly to the
medial axis, the ECM has a storage complexity of O(n) and it can be constructed
in O(n log n) time for an environment with n obstacle vertices.

The ECM can be used to plan paths for disk-shaped characters of any radius,
which is typically not possible when using various other subdivisions into polygons.
It also supports various operations that are important for crowd simulation, such as
finding the nearest static obstacle to a query point. Furthermore, other chapters will
show that the ECM is well-defined for multi-layered 3D environments (Chapter 5),
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that it supports real-time dynamic updates (Chapter 6), and that it can be used to
simulate large crowds of heterogeneous characters in real-time (Chapter 10).

The ECM was first introduced by Geraerts [33]. Compared to this first pub-
lication, we give more formal definitions of a 2D environment, the medial axis,
and the ECM. We also describe a range of geometric operations on the ECM that
are useful for path planning and crowd simulation. Furthermore, we thoroughly
discuss and compare three different implementations of the ECM.

The remainder of this chapter is structured as follows:

• Section 4.2 provides definitions of a 2D environment, its medial axis, and its
Explicit Corridor Map.

• In Section 4.3, we describe various operations on the ECM that are useful
for path planning and crowd simulation.

• Section 4.4 explains how we have implemented the ECM using various
Voronoi diagram libraries.

• In Section 4.5, we use our implementation to efficiently compute the ECM
and perform geometric operations in a range of environments.

• Section 4.6 concludes the chapter and discusses the advantages and limita-
tions of the ECM.

4.2 Definitions

In this section, we give a formal definition of two-dimensional virtual environ-
ments and of the ECM navigation mesh. We also analyze the asymptotic size and
construction time of the ECM.

4.2.1 2D Environment

We define a 2D environment E as a bounded subset of the two-dimensional plane,
with closed polygonal obstacles. The obstacle space Eobs is the union of all obstacles,
including the boundary of the environment. The complement of Eobs is the free
space Efree. An example of a 2D environment is shown in Figure 4.1a.

Let n be the number of vertices required to define Eobs using interior-disjoint
simple polygons, line segments, and points. We call n the complexity of E .

4.2.2 Medial Axis

In Section 3.1, we have briefly described the Voronoi diagram and the medial
axis. There are multiple definitions of the medial axis, each with slightly different
details. We therefore give our own definition; it is comparable to the definitions
by Preparata and Lee [93, 124] but applied specifically to 2D environments.
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Definition 4.1 (Medial axis, 2D). For a 2D environment E , let ma(E) be the set of
all points in Efree that have at least two distinct equidistant nearest points in Eobs, in
terms of 2D Euclidean distance. The medial axis MA(E) is the topological closure of
ma(E).

Figure 4.1b shows the medial axis of an example environment. Since the medial
axis is a pruned Voronoi diagram, it forms a plane graph (a planar graph embedded
in 2D). The term ‘closure’ ensures that degree-1 vertices (at concave obstacle
corners) are also part of the medial axis.

The main difference to the GVD is that a point on the medial axis requires
two distinct points as nearest obstacles; it does not matter from which ‘sites’ these
points originate. Therefore, in Figure 4.1b, the medial axis does not run into the
convex corners of the U-shaped obstacle, whereas such edges typically do appear
in a GVD of line segment sites.

Each medial axis arc A is the bisector of two generators: the endpoints or segments
of Eobs that are nearest to A. If one generator is a line segment and the other is a
point, then A is a parabolic arc; otherwise, A is a line segment.

In this chapter, we refer to all vertices of degree 1, 3, or higher as true vertices.
We refer to degree-2 vertices as semi-vertices because the medial axis only changes
its shape at these points. Observe from Figure 4.1b that a semi-vertex occurs when
the medial axis crosses a normal vector at a convex obstacle corner. We define an
edge as a sequence of medial axis arcs between two true vertices.

Eobs

Efree

(a) Environment (b) Medial axis

Figure 4.1: A simple 2D environment. (a) The obstacle space Eobs (shown in gray) consists
of line segments and polygons. Its complement is the free space Efree. (b) The medial axis
(shown in blue) is a graph through Efree. True vertices are shown as large dots. Semi-vertices
(small dots) occur when a bisector’s generator changes. This is indicated by dashed orange
line segments, which are not part of the graph.
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4.2.3 Explicit Corridor Map

The Explicit Corridor Map is a graph representation of the medial axis annotated
with nearest-obstacle information. It describes each medial axis arc and its sur-
rounding free space in an efficient manner. As such, it is a compact navigation
mesh that can be used to find paths for characters of any radius.

Definition 4.2 (Explicit Corridor Map, 2D). For a 2D environment E with obstacles,
the Explicit Corridor Map ECM(E) is an extended representation of the medial axis
MA(E) as an undirected graph G = (V,E).

• V is the set of true vertices of the medial axis.

• E is the set of edges of the medial axis.

• Each edge eij ∈ E represents the medial axis arcs between two true ver-
tices vi, vj ∈ V . It is represented by a sequence of n′ ≥ 2 bending points1

bp0, . . . , bpn′−1 where bp0 = vi, bpn′−1 = vj , and bp1, . . . , bpn′−2 are the
remaining semi-vertices along the edge.

• Each bending point is a medial axis vertex annotated with nearest-obstacle
information. A bending point bpk on an edge stores its two nearest obstacle
points lk and rk on the left and right side of the edge.

Figure 4.2a shows the ECM of our example environment. Since the ECM is
an undirected graph, any edge eij could also be described as an edge eji, with
the list of bending points reversed and all left and right obstacle points swapped.
Furthermore, a true vertex occurs as the first or last bending point for each of
its incident edges. Each such bending point has its own sense of left and right;
together, they store all nearest obstacle points for the true vertex. Thus, it is
sufficient to store only two obstacle points for each bending point. We also
emphasize that the orange line segments in Figure 4.2a are not graph edges; they
merely denote the relation between bending points and their nearest obstacles.
Figure 4.2b shows the details of an ECM edge.

Annotating the medial axis with nearest-obstacle information has many advan-
tages. One advantage is that the clearance (the distance to the nearest obstacle) is
known at each bending point. This enables path planning for characters of any
radius; that is, we do not have to inflate the obstacles using Minkowski sums for a
particular radius. Another advantage is that these annotations subdivide Efree into
non-overlapping polygonal cells. Section 4.3 will show that these cells are useful
for point location, path planning, and crowd simulation.

4.2.4 Complexity of the Explicit Corridor Map

Theorem 4.1. The ECM of a 2D environment with complexity n can be computed in
O(n log n) time and requires O(n) space.

1Geraerts originally referred to bending points as event points. [33]
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(a) Explicit Corridor Map

bp0

l0,

r0

r1

r2

r3

l1

l2,

l3

bp1

bp2

bp3

(b) ECM edge details

Figure 4.2: The Explicit Corridor Map of a 2D environment. (a) The ECM is a medial axis
with nearest-obstacle annotations, shown as orange line segments between vertices and
their nearest obstacle points. These segments are not edges in the graph. (b) Details of an
ECM edge with four bending points. Each bending point bpi stores its position pi and its
nearest obstacle points li and ri.

Proof. The generalized Voronoi diagram (GVD) of non-crossing line segments with
n distinct endpoints has O(n) vertices and arcs and can be computed in O(n log n)

time [5, 7]. The medial axis (MA) has the same asymptotic size because it is
a pruned GVD. It can be obtained from the GVD without increasing the overall
asymptotic running time [20, 83].

The ECM converts vertices to bending points by adding nearest-obstacle anno-
tations. These can easily be added during the construction algorithm in constant
time per bending point. After all, a medial axis arc cannot be computed without
knowing its generators, which are exactly the nearest obstacle points in the ECM.

What remains to be analyzed is the total number of bending points. Each MA
vertex of degree 1 or 2 occurs as a bending point exactly once. A vertex of degree
d ≥ 3 occurs as a bending point d times: once for each edge that contains this
vertex as an endpoint. Since the sum of all vertex degrees is O(n), there are O(n)

bending points in total, each of which requires O(1) storage.
Thus, the ECM adds a linear amount of information to the medial axis in linear

time. The total construction time remains O(n log n) and the storage size remains
O(n).

4.3 Operations and Applications

This section defines a number of operations on the ECM and explains how they
can be used for path planning. Chapter 10 will provide more information on how
these concepts fit into a generic crowd simulation framework.
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4.3.1 Point Location

The ECM event points and their nearest-obstacle annotations partition the free
space Efree into O(n) non-overlapping polygonal cells. The ECM cell for two
subsequent bending points bpi and bpi+1 on an ECM edge is the polygon bounded
by the counterclockwise sequence of points [pi, ri, ri+1, pi+1, li+1, li]. Note that
some points on this boundary can coincide.

We can perform a point-location query to find out in which ECM cell a query
point is located. There are several data structures that can answer point-location
queries in O(log n) time and that require O(n) space [7, 136]. Once the cell
containing a query point p has been determined, the nearest obstacle point np(p)
to p is guaranteed to lie on the boundary of this cell. This point can be computed
in constant time because each cell has constant complexity. Thus, in a crowd
simulation application, we can easily determine how far each character is removed
from the nearest boundary. This is a special advantage of ECM cells; arbitrary
subdivisions into cells do not have this property in general.

4.3.2 Retraction

Points in the free space can be retracted onto the medial axis. In robot motion
planning, the term ‘retraction’ is used for a function that maps points in Efree onto
the medial axis [164], as well as for complete planning methods based on this
principle [110]. We use the following definition:

Definition 4.3 (Retraction). For any point p in the free space Efree, the retraction
Retr(p) is a unique projection of p onto the medial axis.

1. If p lies on the medial axis, then Retr(p) = p.

2. If p does not lie on the medial axis, let l be the half-line that starts at np(p) and
passes through p. Retr(p) is the first intersection of l with the medial axis.

Figure 4.3a shows examples of retractions. Observe that Retr(p) always lies
in the same ECM cell as p because the half-line l is defined such that the nearest
obstacle does not change along l before intersecting the medial axis. Therefore,
a retraction is easy to compute using the ECM: it can be found in O(log n) time
by using a point-location query followed by constant-time geometric operations.
Mapping points of Efree onto the medial axis is a useful operation for path planning.

4.3.3 Computing ECM Paths

To plan a path for a disk-shaped character in the ECM, we first find a path along
the medial axis that has sufficient clearance. This is equivalent to the retraction
method for motion planning [110]: given a start position s and a goal position g
in Efree, we compute their retractions, and then we compute an optimal path on
the medial axis from Retr(s) to Retr(g) using the A* search algorithm. This search
is efficient because the medial axis is a sparse graph compared to e.g. a grid.
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p

Retr(p)

np(p)

(a) Retractions
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(b) ECM path + corridor (c) Indicative routes

Figure 4.3: (a) Examples of query points (shown in red), their nearest obstacle points
(small dots), and their retractions (circles). (b) Given two positions s and g, the retraction
method is used to compute a path from s to g along the medial axis. A corridor describes
the free space around this path. (c) Within the corridor, we can compute various types of
indicative routes, e.g. with an amount of preferred clearance.

The clearance information stored in each ECM bending point allows us to
precompute the minimum clearance along each edge. The search can then skip
edges for which the clearance is too low for our disk to pass through. This yields
the shortest path along the medial axis with the required clearance.

The free space around a medial axis path can be described using a corridor,
which is the sequence of ECM cells along the path combined with the maximum-
clearance disks at its ECM vertices [33]. Figure 4.3b shows an example.

4.3.4 Computing Indicative Routes

An ECM path can be converted into an indicative route for the character to follow.
Various types of indicative routes can be obtained O(m) time, where m is the
number of ECM cells along the path.

For instance, we can use a funnel algorithm to obtain the shortest path within a
corridor, while keeping a preferred distance to obstacles whenever possible [33].
Examples are displayed in Figure 4.3c. In our implementation, indicative routes
are piecewise linear curves, and the circular arcs of Figure 4.3c are approximated.
It is also easy to compute indicative routes that stay on the left or right side of the
free space (or any interpolation of these extremes), by choosing an appropriate
intermediate point on each of the orange line segments in the corridor. Varying
the ‘side preference’ among characters is a convenient way to obtain diversity in
the crowd.

4.3.5 Computing Visibility Polygons

The ECM can also be used to compute the visibility polygon V (p) of a query point
p ∈ Efree, i.e. the set of all points in Efree that are visible from p. This is useful in
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crowd simulations: it allows us to model what a character can see at a particular
point in time. In Chapter 8, we will use it to let characters re-plan their paths
when they see a dynamic obstacle.

There are many ways to compute visibility polygons in general [35], but an
efficient local algorithm can be used when Efree has been subdivided into cells
whose vertices lie on obstacles [129]. The ECM fulfills this condition, as do
various other navigation meshes [67, 102, 114]. We now briefly describe this local
algorithm. Chapter 5 will show that it also applies to multi-layered environments.

The visibility algorithm is outlined in Figure 4.4a. To compute V (p), we start
in the ECM cell that contains the query point p; this cell is entirely visible from p.
From there, we move to adjacent cells while tracing the boundary of V (p). Each
ECM cell that we visit has a nearest obstacle (a point or a line segment) on the left
and right side. The parts of these obstacles that are visible from p are added to
the boundary of V (p). These visibility checks can be performed in constant time
by keeping track of the angular range of points that p can still see since the last
cell that we visited. At each ECM vertex, the ECM ‘splits’ into multiple edges, each
with their own nearest obstacles on the left and right side. Therefore, at a vertex,
the angular range of visible points is split into multiple parts (one for each edge),
and we recursively compute the parts of V (p) in these sub-ranges. A subroutine
stops when the range of visible points becomes empty. This way, we eventually
trace the boundary of V (p).

The complexity of this algorithm depends on the total number of visits to
ECM cells. A cell can be visited multiple times if the algorithm can reach it by
passing an obstacle on the left and on the right. In an unlucky environment,
O(n) ECM cells may be visited O(n) times, which implies a worst-case running
time of O(n2). However, in many cases, a cell will be visited only a constant
number of times. More importantly, the algorithm is local: by starting at a visible
ECM cell and discovering adjacent visible cells, we do not visit cells that are not
visible. Therefore, visibility queries are very fast in practice, as we will show in
Section 4.5.3.

4.3.6 Checking for Mutual Visibility with Clearance

We can also use the ECM to detect whether two query points s and g are mutually
visible, i.e. whether the line segment sg intersects any obstacles. To compute this,
we start at the ECM cell that contains s and then trace sg while moving from cell
to cell. If g is reached without intersecting a cell boundary that corresponds to an
obstacle, then s and g are mutually visible. This technique can also be applied to
other navigation meshes.

An advantage of using the ECM is that this query can be extended to compute
whether sg is collision-free for a disk. If we know where sg enters and exits a
particular cell, we can compute the minimum distance from sg to the obstacles of
this cell in constant time. For all cells combined, this yields the overall minimum
distance of sg to obstacles. (This does not work for arbitrary navigation meshes,
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in which the cell boundaries do not necessarily represent nearest obstacles.)
If the overall minimum distance is d, we know that disks of radius ≤ d can

move from s to g in a straight line without intersecting any obstacles, and that
disks of radius > d cannot. Figure 4.4b shows an example. Jaklin et al. [62] use
this technique for a path following method, MIRAN, which needs to know which
points on an indicative route can be reached in a straight line by a disk-shaped
character.

p

(a) Visibility polygon

s

gr

(b) Mutual visibility

Figure 4.4: Visibility queries in the ECM. For clarity, the boundaries of ECM cells are shown,
but the medial axis is not. (a) We can compute the visibility polygon V (p) of a point p. The
boundary parts of V (p) generated by obstacles are shown in black. (b) We can compute
whether two points s and g are mutually visible, and we can find the maximum value r
such that the line segment sg (shown in red) is collision-free for a disk of radius r.

4.4 Implementation

Our implementation of the Explicit Corridor Map is the basis of a general crowd
simulation framework. This framework will be the topic of Chapter 10. The
software was written in C++ in Visual Studio 2013.

In this section, we describe how our implementation computes the ECM. This is
useful to discuss because the Voronoi diagram can be constructed in various ways.

4.4.1 Computing the ECM using Voronoi Diagram Libraries

To compute the ECM, we have integrated two different libraries for computing
Voronoi diagrams: Vroni [48] and a package of Boost [14]. Both libraries can
compute a Voronoi diagram inO(n log n) time: Vroni uses randomized incremental
construction [49], and Boost uses a plane sweep algorithm [30].

Since the Boost Voronoi library requires integer coordinates as input, we
multiply all coordinates by 10,000 and round them to the nearest integer. For
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convenience, we use these rounded coordinates in Vroni as well. We use meters as
units, so this scaling implies that we represent all coordinates within a precision of
0.1 millimeters.

Both Vroni and Boost assume that the input sites are interior-disjoint line
segments. In practice, environments are often drawn by hand and may contain
overlapping geometry. Therefore, before computing the ECM, we use another
component of Boost to convert obstacles to interior-disjoint segments, using the
scaled integer coordinates described earlier. After computing the ECM of these line
segments, we remove all graph components that lie inside the original obstacles.
These steps will be included in our time measurements in Section 4.5. Figure 4.5a
outlines the implementation for an example environment.

4.4.2 Computing the ECM by Rendering

It is also possible to compute an approximation of the medial axis and ECM by
using the graphics card [33], based on the work of Hoff et al. [57]. This algorithm
requires a subdivision of Eobs into convex obstacles. It lets each obstacle generate a
3D shape (a distance mesh) in a unique color, and it then renders all shapes using
an orthographic top view. The borders between pixels of different colors roughly
correspond to points of the Voronoi diagram. The accuracy of this approximation
depends of the size of the image that is rendered. An example of a rendered result
is shown in Figure 4.5b.

(a) Exact (b) GPU-based

Figure 4.5: Two ways to generate the ECM. (a) External libraries such as Boost and Vroni
can compute the Voronoi diagram of a set of line segments. When converting this to an
ECM, we need to remove graph components that lie inside the original obstacles. (b)
Alternatively, the Voronoi diagram can be approximated using rendering techniques.

Over time, this graphics-based approach has proven to be less practical than exact
implementations for various reasons:
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• The graphics card imposes a maximum rendering resolution. To allow higher
resolutions, we have developed an algorithm [13] that subdivides an image
into tiles that are small enough to render. The ECM is computed for each tile
separately, and the results are then merged into a single graph. This works
well, but the extra operations add to the complexity of the algorithm.

• The running time scales quickly as the resolution increases. To reduce this
effect, the GPU can be used to perform many operations in parallel [13], but
the overall resolution still has a large impact on the running time.

• It is generally not clear which resolution is required to achieve sufficiently
accurate results. Different environments may require different resolutions,
depending on their level of detail. This unpredictable precision is particularly
problematic in multi-layered environments (MLEs), which we will discuss in
Chapter 5. Constructing the ECM of an MLE requires a high level of precision
that cannot be predicted in advance.

• The algorithm is not robust against special cases such as obstacles that share
a vertex. Such cases have unpredictable effects on the rendered image; it is
difficult to recognize and solve all possible effects.

• Each machine and graphics card may render the image in a slightly different
way, which makes results hard to reproduce.

Due to these disadvantages, the implementations based on Boost and Vroni
are preferred. For more details of the GPU-based method, we refer the interested
reader to the appropriate publications [13, 33].

4.4.3 Point-Location Data Structure

In theory, point-location queries can be answered in O(log n) time [7, 136]. In our
implementation, we use a different approach: we create a grid with cells of 10×10

meters, in which each grid cell cg stores a reference to all ECM cells for which the
axis-aligned bounding box overlaps with cg. To perform a point-location query for
a point q, we find the grid cell cq that contains q in constant time, and we iterate
over all ECM cells stored in cq until we find the ECM cell that actually contains q.
Although this approach leads to slower queries if a grid cell has many associated
ECM cells, the implementation has proven to be fast in our test environments.

We use a grid rather than a theoretically optimal data structure because it is
easier to implement robustly, and because it is easier to update when ECM cells
are added or removed during a simulation (which will be the case in Chapter 6).

4.5 Experiments and Results

This section assesses the performance of our ECM implementations in a range of
virtual environments. These environments are shown in Figure 4.6. More details
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of the environments can be found in Table 4.1.
Military is a simple environment with a small number of obstacles. City is

a more complex virtual city. Zelda is an environment from a computer game.
Zelda2x2, Zelda4x4, and Zelda8x8 are adapted versions of Zelda that have been
duplicated in a 2× 2, 4× 4, and 8× 8 grid pattern.

We have chosen these particular environments because they reflect a range of
complexities. Chapter 5 will show various multi-layered environments. Chapter 7
will contain more 2D and multi-layered examples.

4.5.1 Computing the ECM

We first computed the ECM for all test environments. For each environment,
Table 4.1 shows the complexity of the ECM (i.e. the total number of vertices,
edges, and bending points), as well as the construction time for each of the
three implementations (Vroni, Boost, and GPU). We used a single CPU core in all
implementations.

For the GPU-based method, we only use the standard graphics-based imple-
mentation [33] and not the version with tiling and parallel computations [13].
We experimented with two different rendering resolutions: 5 pixels per meter
(ppm) and 20 ppm. For example, for an environment of 100× 100 meters large,
a resolution of 5 ppm corresponds to an image of 500× 500 pixels. A resolution
of 5 ppm is usually sufficient to obtain a reasonably precise ECM; 20 ppm results
in a more detailed ECM at the cost of slower construction. For this experiment,
choosing a fixed precision is more logical than choosing a fixed image size because
not all environments are equally large.

The complexity of the ECM is slightly different for each implementation. The
GPU version typically yields less complex graphs because it does not recognize all
of the environment’s details. Furthermore, Vroni and Boost handle degenerate
cases such as degree-4 vertices differently. In our remaining experiments, we
will use the ECMs that were computed using Boost; therefore, the complexities
reported in Table 4.1 were taken from the Boost version.

Table 4.2 shows that our Vroni-based implementation was faster than the Boost-
based implementation in all environments. For the most complex 2D environment,
Zelda8x8, computing the ECM took just under 1 second when using Vroni. Hence,
even complex ECMs can be computed quickly. This allows the navigation mesh to
be generated interactively (e.g. when loading a game level, or when used in a tool
for designing environments).

At a resolution of 5 pixels per meter, the GPU-based implementation was always
slower than Vroni and usually slower than Boost. At a high resolution of 20 ppm,
the implementation was the slowest in all environments. Lowering the resolution
can improve the running times in exchange for a less accurate ECM, but we will not
explore this further. As mentioned before, the Vroni and Boost implementations
have many important advantages over the GPU-based version.
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(a) Military (b) City

(c) Zelda (d) Zelda2x2

Figure 4.6: The test environments and their ECMs. Obstacles are shown in gray, the medial
axis is shown in blue, and nearest-obstacle annotations are shown in orange. Zelda4x4 and
Zelda8x8 are not shown because they are very large and structurally similar to Zelda2x2.

Environment Geometry ECM complexity
#Obstacle vertices Size (m) #Vertices #Edges #BPs

Military 108 200× 200 56 71 288
City 2102 500× 500 1442 1621 6306
Zelda 564 100× 100 296 351 1258
Zelda2x2 2304 200× 200 1184 1408 5082
Zelda4x4 9180 400× 400 4720 5624 20329
Zelda8x8 36684 800× 800 18848 22480 81365

Table 4.1: Details of the test environments and their ECMs. The Geometry columns show
the number of obstacle vertices and the physical width and height of the environment (in
meters). The ECM complexity columns show the number of vertices, edges, and bending
points (BPs) in the ECM computed using Boost.
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4.5.2 Computing Paths and Indicative Routes

In each environment, we computed indicative routes between 10,000 pairs of
random start and goal points. A random point was chosen by uniformly sampling
in the environment’s bounding box until an obstacle-free point was found. For
each query pair (s, g), we computed the shortest path between Retr(s) and Retr(g)

on the medial axis using A* search, with the 2D Euclidean distance to Retr(g) as a
heuristic. We then converted this path to a short indicative route with a preferred
distance of 0.5 m to obstacles, using the algorithm described by Geraerts [33].
Figure 4.7a shows examples of indicative routes in the City environment.

The second and third columns of Table 4.3 show the average running times of
these path planning queries per environment. The ‘Path only’ column denotes the
time (in milliseconds) for performing A* search to obtain a path on the medial
axis. The ‘Path + IR’ column denotes the total time for computing the medial axis
path and the indicative route.

The running time depends heavily on the complexity of the resulting path; this
explains the high standard deviations. It can be seen that queries require only a
few milliseconds on average in the most complex environments. Thus, the ECM
allows real-time path planning for large crowds of characters with individual goals.

In complex environments such as Zelda8x8, the advantage of a sparse graph
over a grid becomes clear. A high grid resolution would be required to capture all
details, so the storage requirements would be higher, and path planning would be
slower.

4.5.3 Computing Visibility Polygons

Next, we computed the visibility polygons of 10,000 random query points in each
environment. The running times are reported in the fourth column of Table 4.3.

As explained in Section 4.3.5, the performance of a visibility query depends on
the number of ECM cells visited during the query. Thus, the running time depends
on the environment’s complexity around a query point. This explains why the
algorithm does not become slower for the larger variants of Zelda. In most environ-
ments, a query took around 0.05 milliseconds on average. In the City environment,
the average running time was higher (0.15 ms) because this environment features
large open spaces surrounded by many obstacles. Still, the algorithm is clearly
fast enough for real-time visibility computations during a simulation. Figure 4.7b
shows examples of visibility polygons in the City environment.

4.6 Conclusions and Future Work

In this chapter, we have formally defined the Explicit Corridor Map (ECM) [33] as
a navigation mesh based on the 2D medial axis. The ECM enables path planning
for disk-shaped characters of any radius. It supports efficient geometric operations
such as retractions, nearest-obstacle queries, visibility queries, and the computation
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Environment ECM time (ms)
Vroni Boost GPU (5) GPU (20)

Military 3.5 [0.1] 6.7 [0.1] 37.3 [2.0] 407.2 [35.7]
City 70.9 [0.3] 130.0 [0.7] 300.5 [4.3] 3221.5 [32.0]
Zelda 14.9 [0.1] 23.0 [0.2] 25.5 [0.8] 124.0 [2.7]
Zelda2x2 59.2 [0.5] 92.0 [0.6] 81.4 [2.4] 541.3 [19.6]
Zelda4x4 235.4 [2.4] 367.7 [1.6] 384.7 [9.7] 3110.5 [18.0]
Zelda8x8 997.4 [5.4] 1529.1 [3.8] 3000.0 [17.1] 29304.1 [32.6]

Table 4.2: Construction times of the ECM. The ECM time columns show the ECM con-
struction time for each implementation. ‘GPU (5)’ and ‘GPU (20)’ refer to the GPU-based
implementation with a precision of 5 and 20 pixels per meter, respectively. All times are in
milliseconds and have been averaged over 10 runs. Standard deviations are shown between
square brackets.

Environment Path only Path + IR Visibility

Military 0.006 [0.004] 0.06 [0.04] 0.04 [0.02]
City 0.08 [0.07] 0.30 [0.19] 0.15 [0.06]
Zelda 0.02 [0.02] 0.12 [0.06] 0.05 [0.02]
Zelda2x2 0.07 [0.05] 0.27 [0.13] 0.05 [0.03]
Zelda4x4 0.27 [0.23] 0.64 [0.39] 0.07 [0.03]
Zelda8x8 1.18 [1.13] 1.93 [1.50] 0.05 [0.02]

Table 4.3: Results of the experiments for path planning and visibility queries, as described
in Section 4.5.2 and Section 4.5.3, respectively. All times are in milliseconds, averaged over
10,000 random queries. Standard deviations are shown between square brackets.

(a) Indicative routes (b) Visibility polygons

Figure 4.7: Examples of using the ECM in the City environment. (a) 500 short indicative
routes (shown in blue) with a preferred clearance to obstacles. (b) Visibility polygons.
Query points are shown in black; their visibility polygons are shown in different colors.
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of short paths with preferred clearance to obstacles. For a 2D environment with n
obstacle vertices, the ECM has size O(n) and can be computed in O(n log n) time.

We have implemented the ECM using two robust Voronoi diagram implemen-
tations (Vroni [48] and Boost [14]) and our own GPU-based implementation.
The Vroni and Boost implementations have proven to be more reliable and more
efficient than the GPU-based one. Our software can compute the ECM efficiently
and robustly for large 2D environments. This software forms a solid basis for many
chapters of this thesis. Chapter 10 will show how the ECM and its implementation
can be used for real-time crowd simulation.

A potential disadvantage of the ECM is that the Voronoi diagram is a relatively
complicated data structure. One might argue that the ECM is a less intuitive
representation of the walkable space than e.g. a grid [95] or a triangulation [66].
For the same reason, the best way to implement the ECM construction algorithm is
to use an existing Voronoi diagram library; the ECM cannot easily be implemented
from scratch without relying on external software. Howevever, in exchange for its
somewhat complicated nature, the ECM offers a number of advantages over other
navigation meshes, as explained in this chapter.

A drawback of navigation meshes in general is that the shortest path in the
path planning graph (in our case: the medial axis) is not necessarily homotopic to
the shortest path in the entire environment. Therefore, even a shortened path as
described in Section 4.3.4 can be longer than the overall shortest path. For future
work, we want to analyze path lengths in the ECM and investigate how to improve
them. One option is to combine the ECM with a visibility graph; this combination
would be comparable to the Visibility-Voronoi Complex [161]. A visibility graph
yields shortest paths but has a size of O(n2) [35], which is more complex than a
navigation mesh.

In the following two chapters, we will extend the ECM to handle multi-layered
environments (Chapter 5) and dynamic obstacles (Chapter 6). Next, Chapter 7
will thoroughly compare the ECM to other state-of-the-art navigation meshes.
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5
The Explicit Corridor Map
in Multi-Layered
Environments

In this chapter, we extend the Explicit Corridor Map to a new class of environments,
multi-layered environments (MLEs), which consist of connected planar components.
We extend the medial axis and the ECM to MLEs, we give a construction algorithm,
and we test our implementation on a wide range of environments.

This chapter is based on the following publications:

• W. van Toll, A.F. Cook IV, M.J. van Kreveld, and R. Geraerts. The Explicit
Corridor Map: A medial axis-based navigation mesh for multi-layered envi-
ronments. arXiv:1701.05141, 2017. In submission to a journal. [148]

• W.G. van Toll, A.F. Cook IV, and R. Geraerts. Navigation meshes for realistic
multi-layered environments. In Proceedings of the 24th IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3526–3532, 2011. [153]

5.1 Introduction

The Explicit Corridor Map (ECM) from Chapter 4 is a navigation mesh that en-
ables real-time path planning and crowd simulation for disk-shaped characters
of any radius. In this chapter, we extend the ECM to 3D environments in which
characters are constrained to walkable surfaces, under the assumption that there
is a consistent direction of gravity throughout the environment. Section 2.3 has
explained that these types of environments have become increasingly popular do-
mains for navigation meshes. Real-world examples include multi-story buildings,
train stations, and sports stadiums.

The complete 3D model of an environment is typically too detailed for the
purpose of navigation. Therefore, we will introduce a concept called a walkable
environment (WE) that represents the free space of the original 3D environment.
It is often useful to subdivide the WE into planar layers connected by line seg-
ments called connections. We will refer to such a subdivision as a multi-layered
environment (MLE).

We define the medial axis and the ECM for multi-layered environments, based
on projected distances on the ground plane. For an MLE with n obstacle vertices
and k connections, the MA has size O(n). We present an algorithm that constructs
the MA and ECM in O(n log n log k) time.

The multi-layered ECM has the same properties and applications as in 2D. We
perform the experiments from Chapter 4 in a range of MLEs to show that the
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ECM supports real-time path planning and crowd simulation in large multi-layered
environments. Our formalization of WEs and MLEs will also be used in Chapter 7.

The focus of this chapter lies on the theoretical properties of WEs and MLEs and
their medial axes. The remainder of this chapter is structured as follows:

• Section 5.2 defines walkable environments and multi-layered environments.

• Section 5.3 defines the medial axis and the ECM for WEs and MLEs based on
a projected distance function.

• In Sections 5.4 to 5.6, we present our construction algorithm for the multi-
layered medial axis and ECM.

• Section 5.7 proves that the medial axis of an MLE with n obstacle vertices
and k connections can be computed in O(n log n log k) time.

• Section 5.8 outlines our implementation of the multi-layered ECM.

• In Section 5.9, we apply the same experiments as in Chapter 4 to a range of
large multi-layered environments.

• Section 5.10 concludes the chapter and suggests directions for future work.

5.2 Definitions of Environments

In this section, we define the types of environments embedded in 3D for which
we want to construct a navigation mesh: walkable environments and multi-layered
environments. Our main assumption is that there is a consistent direction of gravity
~g throughout the environment. For example, we support multi-story buildings,
but not arbitrary 3D surfaces such as spherical planets or Möbius strips. As
explained in Chapter 2, this is a common assumption for many navigation meshes
[102, 114, 121], and we consider other 3D surfaces [10, 127] to be outside the
scope of this thesis.

Let a 3D environment be a collection of polygons in R3. These polygons may
include floors, ceilings, walls, or any other type of geometry. Figure 5.1a shows a
simple example of a 3D environment.

The free space Efree of a 3DE is determined by various parameters that describe
on which surfaces a character may walk. Examples include the maximum slope
with respect to the gravity direction ~g, the maximum height difference between
nearby polygons (e.g. the maximum step height of a staircase), and the required
vertical distance between a floor and a ceiling.
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(a) 3D environment (b) WE (c) MLE

Figure 5.1: A simple 3D environment for which we want to compute a navigation mesh.
This figure is equal to Figure 2.3, but we repeat it for convenience. (a) The original
environment is a collection of polygons in 3D. (b) A walkable environment (WE) is a set
of polygons along which characters can walk. (c) A multi-layered environment (MLE) is a
subdivision of the WE into 2D layers. Connections between layers are shown in red.

5.2.1 Walkable Environment

We define a walkable environment (WE) as a set of interior-disjoint polygonal
surfaces in R3 on which characters can walk. Thus, a WE is a clean representation
of the free space Efree of a 3DE, based on the filtering parameters mentioned earlier.
Figure 5.1b shows a simple example of a walkable environment.

A WE can be obtained from a 3DE by filtering out unwalkable parts, e.g.
surfaces that are too steep and surfaces along which the ceiling is too low for
characters to pass under. Such a filtering process typically also merges polygons
that are nearly adjacent; for example, staircases are converted into ramps. As
mentioned in Section 2.3, it is common to use voxel-based techniques for this
process [24, 102, 114, 121], but alternative methods are also in development
[123].

Characters can move from one polygon onto another if these polygons are
connected in 3D. The free space Efree of a WE is simply the entire set of surfaces.
Unlike in the 2D environments from Chapter 4, the obstacle space Eobs of a WE is
not intuitively defined, but we will sometimes refer to points on the boundary of
Efree as ‘obstacle points’.

The WE may consist of multiple connected components: for example, consider
two islands with no bridge connecting them. In topological terms, each component
is an orientable 2-manifold (a surface) with a boundary. This intuitively means
that the WE has a ‘top’ and ‘bottom’ side, and any point on the bottom side
cannot be reached from a point on the top side without intersecting a boundary.
Geometrically, we are only interested in the top side, i.e. the floors and not the
ceilings. The WE is also what we call direction-consistent: slopes are allowed, but
there is a single gravity direction for the entire environment. All polygons in the
WE have a maximum slope with respect to the ground plane P , which is the plane
perpendicular to the gravity direction ~g. This leads to the following definition:

Definition 5.1 (Walkable environment). A walkable environment (WE) is a set
of interior-disjoint polygons in R3 on which characters can walk. Topologically,
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each connected component of a WE is an orientable 2-manifold with a boundary.
Geometrically, the WE is direction-consistent: there exists a horizontal ground plane P
below the WE such that for any non-boundary point q, the infinitesimal neighborhood
σ(q) of q does not overlap itself when projected vertically down onto P .

It is important to note that the entire WE can be self-overlapping when projected
onto the ground plane P , i.e. it is not guaranteed that all surfaces are visible
from a single top view. This is the main difference to 2D environments, and it
strongly influences the construction of navigation meshes: an algorithm for 2D
environments cannot easily be applied to WEs in general.

5.2.2 Multi-Layered Environment

A multi-layered environment (MLE) is a subdivision of a WE into planar layers.
Such a subdivision is useful for many purposes, including visualization (each layer
can be drawn in 2D), identification (all surface points can be uniquely specified
using a 2D position and a layer ID), and the construction of navigation meshes
(as the next section will show). Although a single layer does not need to have a
particular meaning, a typical example of a layer is one floor of a building.

The layers of an MLE are connected by line segments which we call connections.
Intuitively, they are the ‘cuts’ that were introduced during the subdivision into
layers, and they are the edges along which the layers can be ‘glued together’ to
obtain the original WE. Formally, we define an MLE as follows:

Definition 5.2 (Multi-layered environment). A multi-layered environment (MLE)
is a walkable environment (WE) that has been subdivided into l planar layers,
L = {L0, . . . , Ll−1}, using a set C = {C0, . . . , Ck−1} of k connections.

Each layer Li ∈ L is a set of walkable surfaces that are non-overlapping when
projected onto the ground plane P . The free space Efree,i of Li is the union of all
polygons in Li. Combining the free space of all layers yields the free space Efree of the
original WE.

Each connection Cq ∈ C is a line segment with the following properties:

• It lies on the shared boundary of two layers Li and Lj (i 6= j), thus connecting
the walkable polygons of these layers.

• Its endpoints lie on existing boundary vertices of Efree, so its endpoints are
impassable obstacles.

• Its interior is not intersected by any obstacles or by other connections.

Figure 5.1c shows an example of a multi-layered environment. Note that the
MLE is still embedded in 3D, but that each individual layer can be projected onto
P without self-overlap, if desired. Therefore, the projection of a layer Li onto
P is essentially a 2D environment with obstacles as described in Chapter 4. The
boundary vertices of these obstacles are also boundary vertices of Efree.
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Two layers Li and Lj may be connected through multiple connections at
different positions; for example, imagine a bridge that connects to the same layer at
both ends. Also, a subdivision into layers is usually not unique: any subdivision that
meets the requirements described above is acceptable. As described in Section 2.3
of this thesis, there are several approaches to obtaining such a subdivision [24, 55,
114, 162].

5.2.3 Complexity of a Multi-Layered Environment

The complexity of an MLE is given by the number of connections k and the number
of obstacle vertices n in all layers combined. Let ni be the number of obstacle
vertices in a layer Li. We define n as

∑l−1
i=0 ni. Note that a vertex occurs in multiple

layers if it is an endpoint of a connection. The following lemma bounds the number
of connections.

Lemma 5.1. For any multi-layered environment with l layers and n obstacle vertices,
the number of connections k is O(n).

Proof. Let ni be the number of obstacle vertices in a layer Li. By definition,
n =

∑l−1
i=0 ni. In each layer Li, the number of connections is bounded by the

maximum number of non-intersecting line segments that can be drawn between its
ni vertices. Euler’s formula for planar graphs implies that this is O(ni). Therefore,
the total number of connections is O(

∑l−1
i=0 ni) = O(n).

5.3 Definitions of the Medial Axis and ECM

In this section, we define the medial axis and the ECM for walkable and multi-
layered environments. Because our definitions do not require a subdivision into
layers, they apply to both WEs and MLEs.

5.3.1 Projected Distance

To define the medial axis for walkable and multi-layered environments, we need a
notion of distance and path length. We will use the direction-consistency of the WE
to define projected distances in which height differences are ignored. We acknowl-
edge that this is not the same as the 3D distance on a surface. However, projections
are useful and very common for navigation meshes in direction-consistent environ-
ments [102, 114, 121].

For two points s and g in a WE or MLE, let π(s, g) be a path from s to g through
Efree along the walkable surfaces. We define the projected length of π(s, g) as the
curve length of π(s, g) when projected vertically onto the ground plane P . This
projected path can intersect itself: for instance, consider a path along a spiral
staircase.

Let π∗(s, g) be a path from s to g with minimal projected length. We define the
projected distance dP (s, g) between s and g as the projected length of π∗(s, g). That
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is, dP (s, g) ignores any height differences along paths from s to g. Figure 5.2a
shows an example of projected distances.

A shortest path π∗(s, g) is unobstructed if it does not have any bending points
around obstacles. The projection of an unobstructed path onto P is a single line
segment, so its projected length is simply the 2D Euclidean distance between s

and g (when projected onto P ). The following properties hold:

Property 5.1 (Straight-line property). The shortest path π∗(q, nq) from any point
q ∈ Efree to any of its nearest boundary points nq is unobstructed.

Property 5.2 (Empty-circle property). Let q be a point in Efree and let nq be a nearest
boundary point to q, at projected distance d = dP (q, nq). For all points q′ ∈ Efree for
which dP (q, q′) ≤ d, the shortest path π∗(q, q′) is unobstructed. When projected onto
P , these points form a disk with radius d.

5.3.2 Medial Axis

We now define the medial axis based on the function dP :

Definition 5.3 (Medial axis, multi-layered). For a walkable or multi-layered envi-
ronment E with free space Efree, let ma(E) be the set of all points in Efree that have at
least two distinct equidistant nearest points on the boundary of Efree with respect to
the projected distance function dP . The medial axis MA(E) is the topological closure
of ma(E).

Because the remainder of this chapter is based on the projected distance
function, we will often omit the term ‘projected’ when discussing distances and
path lengths.

Figure 5.2b shows the medial axis of an example walkable environment. If an
environment E consists of a single layer Li, then MA(E) = MA(Li). If E consists
of multiple layers, then MA(E) is typically not planar, but intuitively, it is locally
similar to a 2D medial axis everywhere due to the straight-line and empty-circle
properties. We will use these properties to prove that our construction algorithm
for the multi-layered medial axis is correct.

5.3.3 Explicit Corridor Map

The ECM is a graph representation of MA(E) annotated with nearest-obstacle
information, exactly as in 2D environments. The nearest obstacles of a medial axis
point p may lie in different layers than p itself, but this does not change the ECM’s
definition. Due to the straight-line property, all ECM annotations are line segments
when projected onto P .

All operations and applications of the ECM in 2D (given in Section 4.3) imme-
diately apply to the multi-layered ECM because they are only based on the graph
or on the adjacency between ECM cells. The main difference lies in point-location
queries: a query point q in an MLE can no longer be specified uniquely as a 2D
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g
P

s

qnq

(a) Distances (b) Medial axis

Figure 5.2: The medial axis of a walkable environment E is based on path lengths projected
onto the ground plane P . (a) The shortest path between two points s and g is shown as
a bold curve. Its projected length is indicated by the dashed curve. For a non-boundary
point q ∈ Efree with a nearest obstacle point nq, the set of points in Efree within a distance of
dP (q, nq) from q is a disk when projected onto P . (b) The medial axis MA(E) is drawn on
the surfaces of E .

point. Instead, q should be given as a 2D point and a layer ID, or as a 3D point
that can be mapped to the appropriate layer. We then use a separate point-location
data structure for each layer.

5.4 Construction Algorithm Outline

We now give an outline of our algorithm that computes the medial axis of a multi-
layered environment E . The result is also the medial axis of the corresponding
walkable environment. However, our algorithm makes use of the fact that the
two-dimensional medial axis is easy to compute. For this reason, we assume that
the environment has been partitioned into layers. We acknowledge that this is a
necessary pre-processing step that can be solved using other algorithms [54, 55].
Our construction algorithm consists of the following steps:

1. For each individual layer Li, project Li onto P and compute its 2D medial
axis, while treating all of its connections as closed impassable obstacles. This
yields exactly the medial axis MA(Li) according to the projected distance
function dP , but under the assumption that each connection is an obstacle.
The result for all layers combined is the medial axis of E with an extra
line segment obstacle for each connection in C. We denote this result by
MA(E , C). The final medial axis will be different because the connections are
not supposed to be obstacles.

2. Given MA(E , C′) with C′ ⊆ C, choose a closed connection Cq ∈ C′. Open
the connection by removing its interior as an obstacle and repairing the
medial axis in its neighborhood. (The endpoints of the connection will
remain obstacles because they are on the boundary of Efree.) The result is the
medial axis of E in which Cq is no longer an obstacle, i.e. MA(E , C′′) with
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C′′ = C′ \ {Cq}. In Section 5.6, we will describe our algorithm for opening a
connection.

3. Repeat step 2 until all connections are open. The result is MA(E , ∅) = MA(E).

In short, we initially treat all connections as closed and then iteratively remove
them as obstacles. Opening a connection is essentially the deletion of a line
segment Voronoi site [5] but with the extra difficulty that the neighborhood of the
deleted site may span multiple layers. We will explain this further in Section 5.6.
For now, it is sufficient to know that existing deletion algorithms for Voronoi sites
in 2D [1, 25, 81] cannot immediately be applied. Section 5.6 will present an
alternative algorithm.

As explained in Chapter 4, adding nearest-obstacle annotations to the medial
axis to obtain the ECM is easy because these nearest obstacles are already required
to generate medial axis arcs. In the following sections, we will focus on the medial
axis only.

5.5 Properties of a Closed Connection

To develop an algorithm for opening a closed connection, we must first study
the properties of such a connection. Consider a closed connection between two
layers Li and Lj , as in Figure 5.3a. We will now refer to this connection as Cij to
emphasize to which layers it is associated. This notation is not unique because Li
and Lj may be connected via other connections as well. However, in our discussion
of opening a single connection chosen by the main algorithm, it is clear to which
instance we are referring.

5.5.1 Sides

The connection is currently treated as an impassable obstacle between Li and Lj .
Thus, it occurs as an obstacle for the medial axis on two ‘sides’. We define the
side Si as the set of all walkable surfaces and boundary points that are currently
reachable from Cij by starting in Li. Likewise, the side Sj consists of all surfaces
and obstacle points that can be reached from Cij by starting in Lj . These sides are
also annotated in Figure 5.3a.

A side Si at this point in our algorithm is not necessarily the same as a layer Li
in the environment. The side Si includes at least the part of Li that has Cij on its
boundary. If other connections are already open, then Si may contain other layers
as well. If sufficiently many connections have been opened such that Li and Lj
are already connected via another route, then Si and Sj are even equal. However,
for our algorithm, it does not matter which layers are already included in Si or Sj ,
and it is useful to speak of two different sides of the connection.
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Cij

Si

Sj

(a) 3D view

Zj

Zi
Ni

Nj

α(Zi)

α(Zj)

(b) 2D view (c) Medial axis of Nij

Figure 5.3: Opening a connection Cij in an MLE. (a) Initially, Cij is an obstacle on both
sides, Si and Sj . (b) 2D top view of the area around Cij . The influence zone Zij = Zi ∪ Zj

is shaded. The obstacle points Nij = Ni ∪ Nj that are nearest to Zij are shown in bold
black. (c) When opening Cij , the medial axis changes only inside Zij . This medial axis MZ

is defined by Nij .

5.5.2 Influence Zone

When we open Cij , we effectively remove the interior of Cij , denoted by Int(Cij),
as an obstacle from the environment. We do not remove the endpoints because
they will remain obstacles in the WE.

Therefore, we need to determine a new nearest obstacle for all points in the WE
that were previously nearest to Int(Cij). Let the influence zone Zij be the closure of
the set of all points in E that currently have Int(Cij) as a nearest obstacle. Observe
from Figure 5.3b that Zij consists of two parts: one on side Si and the other on
side Sj . (Conceptually, it does not matter if Si and Sj are already equal.) For
convenience, we will refer to these parts as Zi and Zj , respectively.

Lemma 5.2. If the interior of a connection Cij is removed as an obstacle, the medial
axis changes only inside the influence zone Zij .

Proof. By the definition of Zij , removing Int(Cij) causes the nearest obstacle points
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to change only inside (and on the boundary of) Zij . After all, the other points
in Efree were already closer to other obstacles. A consequence is that opening Cij
causes the medial axis to change only in Zij .

Lemma 5.2 implies that MA(E , C′) (the current medial axis with Cij as an
obstacle) and MA(E , C′′) (the medial axis without Cij as an obstacle, which we
want to compute) are equal except in Zij . It is therefore useful to analyze the
shape of Zij .

Lemma 5.3. The influence zone Zij is bounded by the two lines perpendicular to Cij
through Cij ’s endpoints.

Proof. (We will refer to these two lines as the endpoint normals of Cij .) Consider
any point p ∈ Efree that is not between or on the endpoint normals of Cij . Such a
point cannot be closest to Int(Cij) because it must be closer to an endpoint of Cij
or to another obstacle in the environment. Therefore, p cannot be in Zij .

Lemma 5.4. Zi and Zj are both bounded by a sequence of medial axis arcs. Both
sequences, denoted by α(Zi) and α(Zj), are uninterrupted and monotone with respect
to the line supporting Cij .

Proof. We prove the lemma for Zi; the proof for Zj is analogous. Zi is bounded by
a set of medial axis arcs α(Zi) that have a nearest obstacle point on Cij . For every
point z on α(Zi), the nearest point c on Cij can be reached via a line segment zc
that is perpendicular to Cij . If this were not true, then another obstacle would be
in the way and c would not be a nearest obstacle point. Furthermore, c is a nearest
obstacle point for all points on zc because this nearest obstacle cannot change
when moving from z to c. Thus, zc lies entirely inside Zi. Because Zi consists of
infinitely many line segments that all have an endpoint on Cij and that are all
perpendicular to Cij , the boundary α(Zi) is monotone with respect to Cij .

Finally, the definition of an MLE enforces that Int(Cij) does not intersect any
obstacles. Because of this, every point on Int(Cij) has some free space in its
neighborhood: for each c ∈ Int(Cij), the line segment zc exists and has non-zero
length. The endpoints of Cij are the only points where z and c can be equal. This
proves that α(Zi) is a single sequence of arcs.

These lemmas have the following consequences:

Corollary 5.1. The boundary of the influence zone Zij is a single closed loop consist-
ing of α(Zi), α(Zj), and the endpoint normals of Cij .

Corollary 5.2. The influence zone Zij can be projected onto the ground plane P
without overlap. This projection is a single shape without holes (because it has only
one boundary).
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5.5.3 Neighbor Set

Next, we determine which obstacles are required to update the medial axis inside
Zij . On one side Si of the connection, let Ni be the set of all obstacle points that
are nearest to at least one point on α(Zi), excluding Int(Cij) itself. (On the other
side Sj , let Nj be defined analogously.) These are the obstacle points that (together
with Cij) generate the arcs in α(Zi). We exclude Int(Cij) from Ni because we will
be removing this interior as an obstacle. We do explicitly include the endpoints of
Cij in Ni because these will remain obstacles.

We define the neighbor set Nij as the union of Ni and Nj . Informally, this set
contains the ‘Voronoi neighbors’ of the connection. Nij consists of line segments
and points on the boundary of Efree. These are not necessarily the complete original
boundary segments, but only the parts that are actually relevant for Zij . Note that
the neighbors can originate from many different layers and that they can even be
(parts of) other connections that are still closed. A neighbor set is illustrated in
Figure 5.3b.

We will now prove that Nij contains the obstacle points that define the medial
axis in Zij when Int(Cij) is removed. Lemma 5.5 proves that all points of Nij are
needed; Lemma 5.6 proves that no other points are needed.

Lemma 5.5. When Cij is opened, every obstacle point in Nij is a nearest obstacle
for at least one point in Zij .

Proof. When the connection is still closed, every point p ∈ Nij is a nearest obstacle
for at least one point z on the boundary of Zij , by definition. When Cij is opened, p
will still be nearest to z because opening the connection only exposes z to obstacles
that are farther away. Hence, there remains at least one point in Zij (namely z) for
which p is a nearest obstacle. This means that all points of Nij are required.

Lemma 5.6. When Cij is opened, Nij contains all possible nearest obstacle points
for any point in Zij .

Proof. We prove the lemma for Zi; the proof for Zj is analogous. For any point
p ∈ Zi, the nearest obstacle points currently lie in Ni or on Cij , by definition.
Removing the interior of Cij cannot cause other obstacle points on the same side
Si to suddenly become nearest to p. The only remaining option is that an obstacle
on the other side Sj becomes nearest to p. Such an obstacle must definitely lie
in Nj: by definition, all other obstacle points of Sj were already not closest to
Cij itself, so they cannot be closest to a point beyond Cij . Therefore, all possible
nearest obstacle points for Zi are included in Ni and Nj .

5.6 Opening a Connection

To open a closed connection Cij , we now know that we only need to update
the medial axis inside the influence zone Zij . Thus, to compute MA(E , C′′), it is
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sufficient to only compute MA(E , C′′) ∩ Zij and then replace MA(E , C′) ∩ Zij by it.
We will refer to the new medial axis part, MA(E , C′′) ∩ Zij , as MZ for convenience.

Thus, our goal is to compute MZ . Lemmas 5.5 and 5.6 guarantee that MZ is
defined by the obstacles in the neighbor set Nij . An example of MZ is shown in
Figure 5.3c.

Lemma 5.7. The medial axis MZ is a tree that can be projected onto P without
overlap.

Proof. MZ can only contain cycles if Zij contains holes; otherwise, there are
no obstacles to circumnavigate. Furthermore, MZ can only consist of multiple
connected components if Zij is consists of multiple disconnected shapes. Corollary
5.2 states that Zij is a single shape without holes. Therefore, MZ is a single tree.

Corollary 5.2 also states that Zij is non-overlapping when projected onto P .
Because MZ lies entirely inside Zij , it can be projected onto P without overlap as
well.

5.6.1 Preliminary Algorithm

A preliminary approach to computing MZ is to project all obstacles of Nij onto the
ground plane P and then compute the 2D medial axis of this projection [153]. This
is equivalent to a deletion of a site from a 2D Voronoi diagram [25]; the algorithm
takes O(m logm) time where m is the complexity of Nij . Also, the algorithm is
relatively easy to implement by using any available library for Voronoi diagrams
in 2D. We therefore still use it in our current implementation of the multi-layered
ECM (Section 5.8).

However, due to the multi-layered structure of E , this algorithm does not work
in all environments. A single common projection onto P may cause an obstacle of
Nij to influence parts of Zij to which it is actually not closest. Figure 5.4 shows
an example in which the obstacles Ni on side Si cannot be treated as a planar set.

Si

Cij
Sj

Ni

Zi

(a) 3D view

Zi

Ni

Cij

α(Zi)

(b) Projection onto P (c) Projection lifted to 3D

Figure 5.4: Example in which projecting the entire neighbor set onto the ground plane P
leads to problems. (a) One side Si of a connection Cij contains a ramp and a flat surface.
(In this view, the flat surface is partly occluded by the ramp. The occluded boundary part is
shown in dotted gray.) Ni (shown in bold) contains obstacle points from both parts. (b) A
projection of the same situation onto P . (c) If we project all of Ni onto P at the same time,
we effectively treat the points of Ni as obstacles in all surfaces. This will yield an incorrect
medial axis for Zi.
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5.6.2 Improved Algorithm: Outline

We now propose an improved algorithm that uses projected distances without
explicitly projecting all of Ni (or Nj) onto P at the same time. Our new approach
starts at the boundary of Zij and traces the medial axis from there, based on the
obstacles that are locally nearest. This approach is more complicated than the
first algorithm, and it is more difficult to implement robustly because it relies on
different Voronoi diagram algorithms. On the other hand, it avoids the problem of
Figure 5.4, and it is provably correct.

The new approach is outlined in Figure 5.5. Figure 5.5a shows the current
situation with Cij closed, and the other subfigures represent the algorithm for
opening Cij .

Let MZ,i be MZ under the assumption that there are no obstacles in Nj and
that Zj extends to infinity. Thus, MZ,i is defined solely by the obstacles of Ni. By
the same arguments as before, the version of Zij in which Zj extends to infinity
is a simple shape when projected onto P (Corollary 5.2), and MZ,i is a tree that
does not overlap in P either (Lemma 5.7). An example is shown in Figure 5.5b.

Let MZ,j be defined analogously (Figure 5.5c). We compute MZ,i and MZ,j

separately and then merge them to obtain MZ (Figure 5.5d).

5.6.3 Improved Algorithm: Computing a Single Part

To compute MZ,i, we use the plane sweep algorithm by Fortune [30], which traces
a Voronoi diagram (VD) by moving a horizontal sweep line L downwards. This
algorithm is defined for sites in 2D, but we will show how to apply it to our
multi-layered problem.

A thorough analysis of Fortune’s algorithm has been given by de Berg et al.
[7]. We will repeat the most important features. The algorithm maintains an
x-monotone ‘beach line’ consisting of bisector arcs; each arc is defined by the
sweep line L and an input site above L. The endpoints of these beach line arcs
(which are referred to as ‘break points’) are the centers of the largest empty disks
in the environment that are tangent to L. The VD below the beach line is yet to be
determined. As the sweep line moves downwards, the beach line changes, and its
break points trace the edges of the VD. There are two types of events: site events
when L reaches a new site, and circle events when L reaches the lowest point of
a circle through three sites defining adjacent arcs on the beach line. Each event
indicates that a site starts or stops generating a particular arc on the beach line.

We apply Fortune’s algorithm to our multi-layered problem by initializing the
algorithm in such a way that all site events are already handled and all circle
events can be processed just as in 2D. Assume without loss of generality that Cij is
horizontal and that Zi lies above it. We start with a sweep line at the height of Cij
and initialize the beach line as the sequence of arcs α(Zi). Lemma 5.4 states that
this beach line is x-monotone, given that Cij is horizontal. By the same argument,
it will remain x-monotone during the sweep. After initialization, we move the
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Zj

Zi

Cij

(a) Before opening

Ni

L

(b) MZ,i

Nj

L

(c) MZ,j (d) Merging into MZ

Figure 5.5: We compute the medial axis MZ in three steps. (a) The medial axis when Cij

is still closed. (b) MZ,i uses only the obstacles of Ni and assumes that Zj extends to infinity.
We compute it using a plane sweep on the ground plane P , starting with the sweep line
L at Cij , without explicitly projecting all of Ni onto P at the same time. (c) Analogously,
MZ,j uses only Nj . (d) We merge the two parts to obtain MZ .
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sweep line downwards, and the algorithm proceeds exactly as if we were working
in 2D.

The essential difference from a 2D problem is that the beach line now represents
empty disks in the MLE and not on a single plane. To explain this further, Figure 5.6
shows the initial sweep line situation for the self-overlapping environment of
Figure 5.4. An empty disk on the beach line is highlighted in blue. If we would
project all of Ni onto P at the same time (as in our old algorithm [153]), then this
disk would suddenly contain obstacles from other layers. However, these obstacles
are not nearest obstacles according to our distance function dP .

L

Ni

Figure 5.6: The environment from Figure 5.4b when the sweep algorithm begins. A disk
on the beach line may contain obstacles from other layers when projected onto P , but these
are not nearest obstacles.

Each individual event in the sweep algorithm relies only on a point on the
beach line and its nearest obstacles. Due to the straight-line and empty-circle
properties given in Section 5.3, an event can be projected onto P , and its geometric
computations will then work exactly as in 2D: disks are still disks, and paths to
nearest obstacles are still straight line segments. The overall algorithm is a
combinatorial sequence of events, so it does not require a projection of all events
onto P at the same time. Therefore, the algorithm is not affected by the multi-
layered structure of Ni. We will now explain further which events occur and how
they can be processed.

Site events

When the sweep begins, the endpoints of Cij lie exactly on the sweep line. Both
endpoints induce a site event that needs to be processed immediately. The fol-
lowing lemma implies that all other sites lie above Cij , so there are no other site
events.

Lemma 5.8. Each point of Ni either lies above Cij or is an endpoint of Cij .

Proof. We will prove that any obstacle point on side Si that does not lie above Cij
cannot be in Ni. By definition, the interior of Cij is excluded from Ni, and the
endpoints of Cij are included. Thus, we only need to consider the other obstacle
points of Si.
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Recall that Cij is still a closed obstacle when the set Ni is determined. This
means that paths cannot yet go through Cij . Let q be any obstacle point on side Si
that lies below or on the horizontal line C through Cij . Let z be an arbitrary point
in Zi, and let c be the endpoint of Cij that is nearest to z. Note that the shortest
path π∗(z, c) is unobstructed. We can prove that π∗(z, q) is always longer:

• If the line segment zq does not intersect Cij when projected onto P , then
the shortest path π∗(z, q) is at best unobstructed, so it is at least as long as
zq. See Figure 5.7a.

• Otherwise, π∗(z, q) must navigate around Cij , so it is at best a sequence of
two line segments that bends around c (or the other endpoint of Cij). See
Figure 5.7b.

In both cases, π∗(z, q) is clearly longer than π∗(z, c). Therefore, q cannot be nearest
to any point in Zi, and q cannot occur in Ni.

Zi

CijC q

z

c

(a) Straight-line path

Zi

CijC
q

z

c

(b) Path that bends around Cij

Figure 5.7: One side Si of a horizontal connection Cij . An arbitrary point in z ∈ Zi is
highlighted. Any obstacle point q below or on the supporting line C of Cij cannot belong
to the neighboring obstacles Ni. (a) The case in which π∗(z, q) does not navigate around
Cij . (b) The case in which π∗(z, q) navigates around Cij . In both cases, an endpoint c of
Cij will be closer to z than q is. Therefore, q cannot be in Ni.

Circle events

Initially, the potential circle events can be obtained by inspecting all 3-tuples of
adjacent arcs in α(Zi), just as in 2D. Because we look at adjacent arcs only, we
will only trace Voronoi edges of obstacles that are actually Voronoi neighbors in
the MLE. Since MZ,i will be a tree and Zij is planar when projected onto P , only
adjacent Voronoi edges traced on the beach line can meet in a Voronoi vertex.
Therefore, all circle events are discovered.

The effect of a circle event is the same as in 2D. Two of the empty disks on the
beach line merge into one, a site locally disappears as a nearest site, and an arc
disappears from the beach line. In terms of the VD, two Voronoi edges merge into
a Voronoi vertex, and a new Voronoi edge starts being traced. The disappearance
of an arc from the beach line induces two new 3-tuples of adjacent arcs. The circles
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tangent to the corresponding 3-tuples of sites may induce new circle events below
the sweep line. These new events will be added to the event queue (sorted by y
coordinate).

Each individual event (i.e. each change of a nearest site) can be processed exactly as
in 2D. Therefore, all events are recognized, and the algorithm correctly computes
MZ,i. As shown in Figure 5.5b, we end up tracing a tree of medial axis arcs,
starting at the leaves and moving towards the root as we sweep downwards. By
Lemma 5.8, the endpoints of Cij are the lowest sites, so the final event occurs
when the endpoints of Cij become the only remaining nearest obstacles to the
sweep line. These endpoints generate an infinite final edge that is perpendicular
to Cij .

5.6.4 Improved Algorithm: Merging the Two Parts

We compute MZ,j similarly to MZ,i, but by starting with α(Zj) as the beach line
and moving the sweep line upwards instead of downwards. Next, we merge MZ,i

and MZ,j to obtain MZ . We do this by using the merge procedure for Voronoi
diagrams from Shamos and Hoey [131]. Figure 5.5d shows an example.

The merge procedure traverses the Voronoi cells of MZ,i and MZ,j simulta-
neously and builds a new monotone sequence of Voronoi edges between them.
Afterwards, it removes the parts of MZ,i and MZ,j that are no longer needed. This
algorithm requires MZ,i and MZ,j to be planar; we have shown in Section 5.6.3
that this requirement is fulfilled. The second requirement is that Ni and Nj lie in
separate half-planes. Lemma 5.8 implies that this holds: Ni and Nj are separated
by C. The only exceptions are the endpoints of Cij at which the merge starts and
ends.

In each step of the merge procedure, there is one nearest site (a point or a
line segment) ni ∈ Ni and one nearest site nj ∈ Nj , and the new Voronoi edge is
the bisector of ni and nj . This bisector arc ends when either of the nearest sites
changes. Because the medial axes MZ,i and MZ,j are correct, they represent for all
points in Zij the nearest sites from Ni and Nj , respectively. They therefore store
all the information required to detect the changes in nearest sites. Furthermore,
the computations in each step work exactly as in 2D due to the straight-line and
empty-circle properties. Thus, the merge procedure [131] is not affected by the
potential multi-layered nature of Nij , and it correctly computes MZ .

5.6.5 Improved Algorithm: Summary

We now summarize our algorithm for opening a connection. Let E be a multi-
layered environment, and let MA(E , C′) be the medial axis computed so far, in
which a non-empty set of connections C′ ⊆ C is closed. We open a connection
Cij ∈ C′ to obtain MA(E , C′′), where C′′ = C ′ \ {Cij}. Opening Cij works as
follows:
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1. Remove the arcs from MA(E , C′) that are nearest to the interior of Cij . These
are the arcs of MA(E , C′) that bound the influence zone Zij described in
Section 5.5.

2. Compute MZ = MA(E , C′′) ∩ Zij as described in Sections 5.6.3 and 5.6.4.

3. Insert MZ into MA(E , C′) to obtain MA(E , C′′).

5.7 Analysis

In this section, we prove the correctness and the worst-case running time of our
algorithm, and we give the storage complexity of the multi-layered ECM.

5.7.1 Correctness of the Algorithm

The overall construction algorithm outlined in Section 5.4 first computes the
medial axis with all connections as closed obstacles. It then iteratively opens a
closed connection, using the algorithm from Section 5.6, until all connections are
open. The following theorem states that this algorithm correctly computes the
multi-layered medial axis:

Theorem 5.1. Let E be an MLE. Computing MA(E , C) and then iteratively opening
each connection in C as described in Section 5.6 yields the medial axis MA(E).

Proof. Each iteration of this algorithm starts with a correct medial axis MA(E , C′)
and computes a correct medial axis MA(E , C′′) in which one more connection has
been removed as an obstacle. By induction over the number of iterations, the final
result is the correct medial axis MA(E) in which all connections are traversable.

The connections can be opened in any order without affecting the correctness
of the algorithm. However, we will see in the next subsection that opening the
connections in a particular order can affect the running time of the algorithm.

5.7.2 Running Time of the First Step

The first step of our construction algorithm computes the medial axis of all layers
with all connections closed. This can be achieved using a single 2D algorithm
because the medial axis consists of separate 2D components that do not yet
influence each other. Lemma 5.1 has shown that the number of connections k
is linear in the number of obstacle points n in the MLE. Thus, the presence of k
connections does not affect the asymptotic complexity, and we essentially compute
a 2D medial axis of an input with complexity O(n). Section 4.2.4 has shown that
this can be performed in O(n log n) time.
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5.7.3 Running Time to Open One Connection

Lemma 5.9. A single connection Cij can be opened in O(m logm) time, where m is
the complexity of the neighbor set Nij .

Proof. Our algorithm for opening a connection starts with two instances of a sweep
line algorithm [30]. Both instances take O(m logm) time because they involve
O(m) circle events that need to be maintained in sorted order. Next, we perform
one O(m)-time merge step of a divide-and-conquer algorithm [131]. Therefore,
the total running time is O(m logm).

In many practical scenarios, the connections and obstacles are spread through-
out the environment, and m will be constant in most iterations of the algorithm.
However, if many obstacles are close to the connection, m can be Θ(n).

5.7.4 Total Running Time Using a Bad Order

Based on Lemma 5.9, iteratively opening all connections takes O(
∑k−1
i=0 mi logmi)

time in total, where mi is the neighbor set complexity of the connection that
is opened in iteration i. Note that the neighbor sets of closed connections can
change during the algorithm because obstacles may turn out to influence other
connections when a nearby connection is opened. In other words, a neighbor set’s
complexity depends on what lies beyond the nearby connections that are already
open. This suggests that the total construction time depends on the order in which
the connections are opened.

In many environments, each obstacle will only affect the algorithm in a con-
stant number of iterations regardless of this order, which means that the total
construction time will remain O(n log n). However, there are environments in
which opening the connections in an ‘unlucky’ order leads to a worse construction
time. The following lemma analyzes this:

Lemma 5.10. There exists an environment with n obstacle vertices and k connections
such that opening the connections in an inefficient order gives Θ(k) neighbor sets of
complexity Θ(n).

Proof. Figure 5.8 shows an example in which a ramp has been subdivided into a
chain of small layers. All connections are close together, and the bottom connection
has a row of Θ(n) neighboring obstacles on the ground plane. If the connections
are opened from the bottom to the top, the first neighbor set has complexity Θ(n).
When the first connection is open, the same obstacles have become neighbors of
the second connection, so the second neighbor set will also have complexity Θ(n).
By repeating this argument, we see that this holds for each of the k iterations.

When using the O(m logm)-time algorithm from Section 5.6 in each iteration,
the total running time for this unfortunate order becomes O(kn log n). In our first
publication on the multi-layered ECM [153], we reported this as the worst-case
running time of our algorithm.
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L0

L1

L2

L3

L4

L5

L6

(a) Distances (b) Medial axis

Figure 5.8: A worst-case example for our incremental algorithm. (a) A ramp has been
subdivided into a sequence of small layers. The ground floor contains a row of Θ(n)

obstacles. If we open the connections from bottom to top, each connection will have Θ(n)

obstacles in its neighbor set. (b) In the final medial axis, many edges will run through
multiple connections.

5.7.5 Total Running Time Using a Good Order

To improve upon this result, we now show that we can always construct the medial
axis in O(n log n log k) time by choosing an ‘easy’ connection in each iteration.
We begin by showing that the medial axis has linear size throughout the entire
algorithm.

Lemma 5.11. For any MLE, the medial axis has size O(n) in each iteration of our
algorithm.

Proof. In the initial step of the algorithm, we compute a medial axis of O(n)

sites, which has size O(n). Since opening a connection is analogous to deleting a
Voronoi site, the asymptotic complexity of the graph cannot increase during the
algorithm.

Lemma 5.12. When q connections are still closed, there is at least one connection
with a neighbor set complexity of O(nq ).

Proof. By Lemma 5.11, the medial axis always has O(n) arcs. At any point in the
incremental algorithm, every arc bounds the influence zone of at most two connec-
tions, namely one on each side of the arc. Therefore, the combined complexity of
all influence zones (or, equivalently, of all neighbor sets) is O(n). When this O(n)

complexity is shared by q connections, there must be at least one connection with
a neighbor set complexity of O(nq ).

Lemma 5.13. The k connections can be opened in O(n log n log k) total time.

Proof. We will repeatedly open the connection with the smallest neighbor set
complexity. To achieve this, we first compute the neighbor set complexities of all
k closed connections. This can be done in O(n) time by traversing the medial
axis once and incrementing the complexity for a connection Cx whenever an arc
has Cx as a nearest obstacle. Next, we sort the connections by complexity in a
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balanced binary search tree T . This requires O(k log k) time, which is O(n log n)

because k is O(n).
Assume for now that we can maintain the sorting order in T such that we can

always get the connection with the smallest complexity. Let Cq be this easiest
connection when q connections are closed. By Lemma 5.12, it has a complexity of
O(nq ). Using the algorithm of Section 5.6, we can open it in O(nq log n

q ) time.
Next, we show that T can indeed be maintained efficiently. The neighbor sets of

other closed connections can change due to opening Cq. However, any connection
that is affected must be one of the neighboring obstacles of Cq. Therefore, the
number of neighbor sets that can change is O(nq ). We can update the complexities
of these neighbor sets in O(nq ) time: for each added or removed arc with a
connection Cx as a nearest obstacle, we increment or decrement the neighbor
set complexity for Cx. Afterwards, we update the search tree T by deleting and
re-inserting all complexities that have changed. This takes O(nq log q) time because
it requires O(nq ) update operations. Thus, opening Cq and updating T afterwards
takes O(nq (log n

q + log q)) = O(nq log n) time.
Because T is maintained correctly, we can always open the connection with the

lowest neighbor set complexity. For all k iterations combined, we obtain a running
time ofO(

∑k
q=1

n
q log n) = O(

∑k
q=1(n log n· 1q )) = O(n log n

∑k
q=1

1
q ) = O(n log n·

Hk). Here, Hk is the kth harmonic number, which is known to be Θ(log k).
Therefore, the total running time to open all connections is O(n log n log k).

Combined with the O(n log n) running time for the first step (i.e. computing
the medial axis of each layer with all connections closed), we obtain the following
result:

Theorem 5.2. The medial axis of a multi-layered environment with n obstacle
vertices and k connections can be computed in O(n log n log k) time.

5.7.6 Running Time In Case of Linear-Time Iterations

Recently, Khramtcova and Papadopoulou [81] have proposed an O(m)-time algo-
rithm for deleting a line segment site s from a 2D Voronoi diagram, where m is the
complexity of the Voronoi cell of s. It is therefore likely that a connection with a
neighbor set complexity of m can be opened in O(m) time as well. However, it is
unclear whether this algorithm can be applied to the multi-layered neighborhood
of a connection. Proving this is a challenging topic for future work.

The next theorem states that an O(m)-time algorithm for opening a connection
would improve the overall running time to O(n log n). This would be an important
result: the number of connections would have no influence on the asymptotic time,
and the algorithm would be optimal because a lower bound of Ω(n log n) already
exists for 2D environments [5].

Theorem 5.3. If a connection with neighbor set complexity m can be opened in O(m)

time, then the medial axis of an MLE can be computed in O(n log n) time.
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Proof. To achieve this result, we can no longer afford to keep the connections in
sorted order by complexity. Instead, we will iteratively open a connection that
is sufficiently easy, but not necessarily the easiest. This allows us to open the
connections in log k phases that each take O(n) time.

By Lemma 5.12, there must be connections in the first k/2 iterations with a
complexity of O(nk ), O( n

k−1 ), . . ., O( n
k/2 ). These complexities are all ≤ d · nk for

some constant d > 0. In practice, d can be quite small because the complexity of
the initial medial axis can only increase by a small constant factor.

As in Lemma 5.13, we first compute all neighbor set complexities in O(n) time.
However, instead of storing the connections in a tree, we fill a doubly-linked list
D with all connections that have a neighbor set complexity of at most N = d · nk .
We can then choose an arbitrary connection C in D and open it in O(nk ) time. For
all O(nk ) complexities that change, we add the corresponding connection to D if
its complexity becomes sufficiently small, or remove it from D if the complexity
becomes too large. These operations take constant time if we give each connection
a pointer to its position in D.

By doing this k/2 times, we spend O(n) time on opening half of all connec-
tions. In the next k/4 iterations, there must be a connection with a neighbor set
complexity of ≤ 2N . Thus, if we update D using a new upper bound of 2N , we
can perform k/4 more iterations in O(n) total time. If we repeat this process of
doubling N and opening half of the remaining connections, we will eventually
have opened all connections in log k phases of O(n) time each. This yields a total
running time of O(n log k). Combined with the O(n log n)-time first step and the
fact that k is O(n), the theorem follows.

5.7.7 Complexity of the Medial Axis

Finally, we give the storage complexity of the multi-layered medial axis when all
connections have been opened. It follows immediately from Lemma 5.11: the
complexity is O(n) at each point in the algorithm, including at the end.

Theorem 5.4. The medial axis of a multi-layered environment with n obstacle
vertices and k connections has a storage complexity of O(n).

5.8 Implementation

We have extended our C++ implementation of the 2D ECM (Section 4.4) to
multi-layered environments. For each 2D component of the algorithm, we have
included the same Vroni and Boost implementations as in Chapter 4.

In preliminary experiments, the GPU-based implementation turned out to be
too imprecise to yield correct results. Opening a connection Cij requires a certain
level of precision such that the new medial axis MZ through Cij can be reliably
merged into the main medial axis. In general, the rendering resolution that is
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needed to open all connections correctly cannot be predicted. We therefore exclude
the GPU-based implementation from our experiments in this chapter.

In some environments, the medial axis may contain edges that run across many
layers. We ensure that each edge can be associated with a single layer, mainly for
visualization purposes. We do this by splitting each edge wherever it intersects one
of the (now opened) connections. Computing these intersections takes extra time,
and it can increase the worst-case complexity of the graph to O(kn) if many edges
intersect many connections, such as in Figure 5.8b. We include this post-processing
step in the measurements of Section 5.9.

Even after the ECM edges have been split up, a single cell in the multi-layered
ECM can span multiple layers because points on the medial axis can have their
nearest obstacles in other layers. In other words, a point in a particular layer
Li may belong to an ECM cell whose ECM edge does not lie in Li. This makes
point-location queries slightly more involved in practice because the appropriate
layer needs to be found. A basic solution is to create a separate data structure that
maps these difficult areas of Efree to the layer IDs of the corresponding edges. We
will not discuss these details further in this thesis.

We have used many test environments to obtain a robust implementation. For
future work, there are two ways in which our implementation can still be improved.
First, we currently open the connections in the order in which they are listed in the
environment, which is not necessarily optimal. Second, we open the connections
using the algorithm from Section 5.6.1, so we cannot yet handle self-overlap near
connections such as in Figure 5.4. On the other hand, this allowed us to use
existing robust Voronoi diagram libraries such as Vroni [48] and Boost [14] for
opening connections. These theoretical issues are not a problem for any of the real-
world environments in our test set. Section 5.9 will show that our implementation
of the multi-layered ECM construction algorithm is very fast in practice.

5.9 Experiments and Results

This section assesses the performance of our ECM implementations in multi-layered
environments. We use only one CPU core in our experiments, except at the end of
Section 5.9.2 where we use multi-threading to speed up the algorithm.

5.9.1 Environments

The multi-layered environments of our experiments are described below. More
details can be found in Table 5.1.

• Ramps (Figures 5.9a to 5.9c) consists of three flat layers connected by four
ramps. Each ramp is modelled as a separate layer for simplicity.

• Ramps2 (Figure 5.9) is a version of Ramps in which we have added 56
polygonal obstacles to the flat layers.
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• Library (Figure 5.11) is a simplified model of the Utrecht University campus
library.

• Station (Figures 5.10a and 5.10b) is a model of a train station with one main
hall and one layer containing all platforms; these two layers are connected
by 32 ramps. Again, each ramp has been modelled as a separate layer.

• Tower (Figure 5.12) is a complex multi-story apartment building.

• Stadium (Figures 5.10b and 5.10c) is a model of an American football sta-
dium with many staircases and obstacles. Since it has been drawn manually
based on real-world data, it contains small gaps that generate disconnected
graph components. It also features sequences of nearly-collinear points that
generate medial axis edges when the input coordinates have been rounded
and scaled. These graph elements seem redundant, but they are correct in
our scaled integer coordinate system.

• BigCity (Figure 5.13) is a combination of the 2D city environment, six
instances of Tower, and two instances of Library. The towers are highly
detailed compared to the rest of the environment. Voxel-based navigation
mesh algorithms would require a very high resolution to capture all details.

• BigCity2x2 consists of four tiled instances of BigCity. It measures 1 km2 and
contains 784 connections.

Environment Geometry Multi-layered
#Obstacle vertices Size (m) #Layers #Connections

Ramps 147 100× 100 7 8
Ramps2 422 100× 100 7 8
Library 717 60× 24 9 8
Station 2242 153× 111 34 64
Tower 6058 35× 35 17 30
Stadium 12915 280× 184 18 82
BigCity 49476 500× 500 113 196
BigCity2x2 197884 1000× 1000 449 784

Table 5.1: Details of the test environments. The Geometry columns show the number of
obstacle vertices and the physical width and height of the environment (in meters). The
Multi-layered columns show the number of layers and connections of each environment.

5.9.2 Computing the ECM

Table 5.2 shows the ECM complexities and construction times for these environ-
ments. For comparative purposes, we have also added the results for Zelda8x8, the
largest 2D environment from Chapter 4. The construction time is still well under a
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(a) Ramps in 3D

(b) Ramps (c) Ramps (continued)

(d) Ramps2 (e) Ramps2 (continued)

Figure 5.9: The Ramps and Ramps2 environments and their ECMs. (a) 3D view of Ramps.
(b)–(c) Top views of Ramps for the ground floor and the other layers, respectively. (d)–(e)
Top views of Ramps2, a version of Ramps in which many extra obstacles have been added.
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(a) Station (b) Station (continued)

(c) Stadium (d) Stadium (continued)

Figure 5.10: Top views of some of the layers of Station and Stadium. For Stadium, the
nearest-obstacle annotations of the ECM have been omitted for clarity.

Figure 5.11: 3D view of the Library environment and its medial axis. The nearest-obstacle
annotations of the ECM have been omitted for clarity.
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Figure 5.12: 3D view of the Tower environment and its medial axis.

Figure 5.13: 3D view of the BigCity environment and its medial axis. For clarity, the
nearest-obstacle annotations of the ECM have been omitted. The gray obstacles from the 2D
City environment in Chapter 4 are now modelled as holes in the walkable space of BigCity.
BigCity2x2 is not shown because it is very large and structurally similar to BigCity.



72

Chapter 5. The Explicit Corridor Map in Multi-Layered Environments

second for all MLEs except the two BigCity variants. For the largest environment,
BigCity2x2, the construction takes about 9 seconds when using Vroni.

The Boost implementation for Voronoi diagrams is thread-safe, so we can use
multi-threading to compute the initial ECMs of all layers in parallel. The running
times for this multi-threaded Boost version are also shown in Table 5.2. We used
OpenMP with 5 parallel threads and dynamic scheduling. This version performed
particularly well in environments with many complex layers; in particular, the ECM
of BigCity2x2 was computed in approximately 4.2 seconds. Standard deviations
among running times were higher because the threads were scheduled in an
unpredictable way. Still, this implementation shows that multi-threading is a
promising addition.

Environment ECM complexity ECM time (ms)
#Vertices #Edges #BPs Vroni Boost Boost (MT)

Ramps 54 61 181 5.8 [0.2] 9.4 [0.3] 7.6 [0.1]
Ramps2 228 290 1118 16.3 [0.4] 29.5 [0.6] 21.2 [0.1]
Library 219 222 599 14.7 [0.3] 20.2 [0.4] 9.2 [0.1]
Station 660 768 2804 68.6 [0.3] 97.3 [0.5] 74.3 [0.3]
Tower 4948 4979 14407 248.8 [2.2] 383.4 [1.3] 110.1 [3.4]
Stadium 6303 7754 26323 442.4 [8.2] 572.2 [1.6] 263.5 [4.7]
Zelda8x8 (2D) 18848 22480 81365 997.4 [5.4] 1529.1 [3.8] -
BigCity 32264 32652 104002 2168.6 [19.6] 3430.0 [10.9] 925.7 [29.6]
BigCity2x2 129147 130702 416411 8972.5 [32.7] 14287.0 [41.7] 4219.3 [91.9]

Table 5.2: Details of the ECMs for our experiments. The ECM complexity columns show the
number of vertices, edges, and bending points (BPs) in the ECM computed using Boost. The
ECM time columns show the ECM construction time for each implementation: Vroni, Boost,
and Boost using 5 parallel threads. All times are in milliseconds and have been averaged
over 10 runs. Standard deviations are shown between square brackets.

Environment Path only Path + IR Visibility

Ramps 0.005 [0.004] 0.04 [0.02] 0.03 [0.01]
Ramps2 0.02 [0.01] 0.11 [0.05] 0.06 [0.02]
Library 0.02 [0.01] 0.15 [0.08] 0.03 [0.01]
Station 0.05 [0.04] 0.21 [0.13] 0.09 [0.08]
Tower 0.40 [0.30] 0.72 [0.40] 0.06 [0.03]
Stadium 0.45 [0.47] 0.80 [0.64] 0.14 [0.12]
Zelda8x8 (2D) 1.18 [1.13] 1.93 [1.50] 0.05 [0.02]
BigCity 0.87 [1.17] 1.32 [1.46] 0.11 [0.07]
BigCity2x2 3.71 [4.41] 4.56 [5.01] 0.18 [0.12]

Table 5.3: Results of the other experiments. All times are in milliseconds, averaged over
10,000 random queries. Standard deviations are shown between square brackets.

5.9.3 Other Operations

In Chapter 4, we have described various geometric operations and applications of
the ECM in 2D: computing paths on the medial axis, computing indicative routes
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with clearance, and computing visibility information. For completeness, we have
applied the corresponding experiments from Section 4.5 to our new MLEs as well.

When computing a random query point, we first chose a random layer such
that the probability of a layer being chosen was proportional to its surface area.
We then computed a random point within this layer. All other settings of the
experiments have remained the same as in the previous chapter.

The results for path planning are comparable to the results in Chapter 4: path
planning is slower in more complex environments, and standard deviations are
high because the queries differ in difficulty. In BigCity2x2, the average running time
for computing an indicative route was highest (4.56 ms) because this environment
is more complex than any of the 2D environments from Chapter 4.

The visibility polygon algorithm from Section 4.3.5 can also be applied to
MLEs. We do not need to make any changes to the 2D algorithm because it is only
based on the adjacency between ECM cells. In an MLE, the algorithm computes a
‘2.5D’ visibility polygon [129] that can span multiple layers while ignoring height
differences along surfaces. This is coarse approximation of full 3D visibility, but it is
still useful for crowd simulation purposes. An example is illustrated in Figure 5.14.

p

(a) 2D view

p

(b) 3D view

Figure 5.14: Example of a visibility polygon V (p) for a query point p, using a simplified
version the Ramps environment. (a) When projected onto P , V (p) is a non-overlapping
polygon, just like in 2D environments. The part of V (p) that lies on the ground plane is
shown in a different color than the parts that lie on other layers. (b) The same visibility
polygon lifted back into 3D.

Visibility queries in MLEs perform comparably to those in 2D environments.
These queries are local and less dependent on the overall complexity of an envi-
ronment. In BigCity2x2, the average running time is highest because most query
points were on the ground plane (which has the highest surface area), and this
ground plane is essentially a more complex version of the City environment.

These results indicate that the multi-layered ECM supports the same efficient
operations and applications as the 2D ECM.
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5.10 Conclusions and Future Work

Modern games and simulations feature environments that cannot be represented in
2D. Examples include multi-story buildings, train stations, or cities with bridges and
tunnels. In this chapter, we have extended the Explicit Corridor Map navigation
mesh to a new domain of multi-layered environments. A walkable environment
(WE) is a collection of walkable surfaces in 3D with a consistent direction of gravity.
A multi-layered environment (MLE) is a WE that has been subdivided into 2D
layers connected by k line segment connections. These formalized concepts are
useful for other navigation meshes as well.

We have defined the medial axis and the ECM for WEs and MLEs based on
projected distances on the ground plane. We have presented an algorithm that
computes the multi-layered medial axis in O(n log n log k) time by initially treating
all connections as closed obstacles and then opening them incrementally. Opening
a connection is comparable to a deletion of a Voronoi site, but with possible
complications such that 2D deletion algorithms cannot always be applied.

Experiments show that our implementation can compute the medial axis and
ECM of an MLE efficiently, and that the operations and applications for the ECM
described in Chapter 4 apply to MLEs as well. As such, the ECM enables real-
time path planning and crowd simulation for disk-shaped characters in 2D and
multi-layered environments.

Discussion and future work. Just as in 2D, the complicated nature of the medial
axis may be seen as a disadvantage of the ECM compared to e.g. grids or trian-
gulations. For MLEs, the ECM construction algorithm is relatively complex, and
the possibility of ECM cells spanning multiple layers may seem counter-intuitive.
However, because the multi-layered ECM is based on a continuous medial axis for
the entire MLE, it shares the same advantages as the ECM for 2D environments.
Therefore, the ECM is a useful basis for crowd simulation in MLEs as well.

We have shown how the multi-layered medial axis construction time can be
improved to an optimal O(n log n) if a connection bounded by m medial axis arcs
can be opened in O(m) time. Recent results for 2D Voronoi diagrams indicate that
such a linear-time algorithm might exist [81], but these results are not immediately
applicable to our problem. Thus, finding an O(m)-time algorithm for opening a
connection is a challenging topic for future work.

In the future, we intend to create exact algorithms for obtaining walkable and
multi-layered environments from arbitrary 3D geometry. Up until now, most exist-
ing algorithms are based on voxels; these techniques approximate the geometry, do
not scale well to large environments, and tend to require a lot of parameter tuning.
Exact algorithms would depend only on the actual complexity of the environment
(e.g. the number of triangles). On the other hand, exact algorithms also recognize
small details such as gaps or overlaps that were accidentally introduced by the
environment’s designer. It may be difficult to obtain a robust implementation in
which these details can still be filtered away.
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Finally, it is also interesting to lift other 2D data structures (such as visibility
graphs) to the multi-layered domain. We believe that multi-layered environments
give rise to an interesting new class of problems for future research.
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6
The Explicit Corridor Map
in Dynamic Environments

In this chapter, we present algorithms that update the ECM locally when a dynamic
obstacle is inserted or removed. These operations on the ECM enable efficient
crowd simulations in dynamically changing environments.

This chapter is based on the following publication:

• W.G. van Toll, A.F. Cook IV, and R. Geraerts. A navigation mesh for dynamic
environments. Computer Animation and Virtual Worlds, 23(6):535–546,
2012. [154]

6.1 Introduction

Up until now, this thesis has presented navigation meshes as efficient representa-
tions of a 2D or 3D environment for path planning purposes.

In this chapter, we extend the concept to dynamic environments in which
obstacles can appear, disappear, or move during the simulation. Such an obstacle
may have a large impact on the environment. For example, imagine a bridge
collapsing, an explosion opening up a new route, or a large vehicle blocking an
alley. In such cases, a local collision avoidance method may not be able to guide
characters towards their goals: a character may get stuck along its old route,
instead of looking for a detour.

The solution to such problems is to update the navigation mesh and to let
characters re-plan their paths in the updated mesh. Recomputing the navigation
mesh from scratch is too computationally expensive for real-time performance,
especially if the environment is complex. Therefore, we are interested in algorithms
that update the mesh locally, i.e. only in the areas that actually change.

This chapter shows how to locally update the Explicit Corridor Map (ECM) from
Chapters 4 and 5 in response to dynamic obstacles. An example of a dynamic
update is shown in Figure 6.1. We focus on insertions and deletions of obstacles.
In practice, it is common to treat moving obstacles as locally avoidable entities
(just like moving characters) until they become stationary, or to approximate their
movement by a sequence of deletions and insertions.

Our algorithms are based on site insertions and deletions in Voronoi diagrams;
the algorithms are efficient because they update the ECM only in the areas that
change. We acknowledge that the ideas behind these algorithms are not novel,
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(a) Before insertion (b) After insertion

Figure 6.1: 3D impression of a dynamic ECM update in a multi-layered environment. The
dynamic obstacle is shown in yellow and black.

unlike in Chapter 5 in which we explored an entirely new problem domain. Instead,
the goal of this chapter is to explain and solve the problem of dynamic updates
step by step, with detailed pseudocode, in the context of the ECM.

We will also show that our implementation can update the ECM within millisec-
onds. This enables path planning and crowd simulation in dynamic environments
in which obstacles are added and removed in real-time. Furthermore, in Chap-
ter 8, we will present an algorithm that re-plans paths more efficiently after the
navigation mesh has been updated.

Compared to our original publication on the dynamic ECM [154], we express
the insertion algorithm and its pseudocode in terms of ECM cells, we discuss ex-
tensions and limitations more thoroughly, and we repeat our experiments without
requiring GPU-based methods.

The remainder of this chapter is structured as follows:

• Section 6.2 describes related work on dynamic updates in Voronoi diagrams
and navigation meshes.

• Section 6.3 presents an algorithm that inserts a point obstacle into the ECM.

• Section 6.4 extends this algorithm to insertions of line segments and convex
polygons.

• Section 6.5 shows how to delete an obstacle from the ECM.

• In Section 6.6, we explain how the algorithms can be extended to handle
e.g. intersecting obstacles and multi-layered environments.

• In Section 6.7, we perform experiments to show that our implementation
can update the ECM within milliseconds.

• Section 6.8 concludes the chapter and discusses potential directions for
future work.
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6.2 Related Work

For general information on Voronoi diagrams (VDs), we recommend the reader to
revisit Section 3.1. In this section, we will focus on dynamic environments and
dynamically updated VDs.

6.2.1 Representing Dynamic Environments

Some data structures can handle obstacles that change over time. The adaptive
roadmaps of Sud et al. [141] contain elastic edges that can change along with
the environment. Roos and Noltemeier [128] have studied Voronoi diagrams
of moving points. Kallmann and Matarić [70] describe dynamic roadmaps that
keep track of the obstacles in the environment and constantly update a graph. In
general, if the dynamic changes are known in advance (e.g. for moving obstacles
with predefined trajectories), a time dimension can be added to the problem space
to represent changes in the environment [92].

However, adding an extra dimension makes the problem space more compli-
cated and less suitable for e.g. real-time path planning and crowd simulation. Also,
we are interested in environments in which obstacles can be added and removed in
arbitrary ways. For these purposes, it is more appropriate to use a navigation mesh
that can be updated dynamically. At the time of writing this thesis, some navigation
meshes other than the ECM support dynamic updates as well [41, 67, 68].

6.2.2 Updating Voronoi Diagrams

Green and Sibson [39] have developed an incremental algorithm for constructing
VDs of point sites. Each iteration of this algorithm adds a single site; thus, such an
iteration can be seen as a dynamic update. Since then, others have investigated
numerically robust implementations [59] that can succesfully insert up to one
million point sites [143]. Held [48, 49] has created robust implementations that
also support line segments and circular arcs as sites.

Deletions of point sites from VDs have been studied by e.g. Devillers [25],
Mostafavi et al. [103], and Gowda et al. [38]. Khramtcova and Papadopoulou [81]
have shown that a line segment site can be deleted in O(m) time where m is the
complexity of the segment’s Voronoi cell. Concurrently with our work, De Moura
Pinto and Dal Sasso Freitas [104] have implemented insertions and deletions for
VDs of complex sites. Our results are similar, but more application-oriented.

6.3 Inserting a Point Obstacle

We first describe how to insert a point obstacle into a 2D ECM. In Section 6.3, we
will extend this algorithm to convex polygon obstacles in 2D. Section 6.6 will study
other extensions, e.g. to non-convex polygons and to multi-layered ECMs.
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6.3.1 ECM Cells and Cell Relations

In Chapter 4, we have shown that the ECM subdivides Efree into polygonal cells,
and that an ECM cell is defined by two subsequent bending points on the medial
axis. Because our algorithms will be expressed in terms of ECM cells and their
adjacency relations, we now define these concepts more precisely.

For an ECM cell C, we will refer to its two bending points as bp1(C) and bp2(C).
We will omit the argument C whenever it is clear to which cell we are referring.
Both bending points bpi consist of a position pi and two nearest obstacle points: li
on the left side and ri on the right side of the medial axis. Examples are shown in
Figure 6.2a. Note that some of the points pi, li, and ri can coincide.

Because the ECM is an undirected graph, a cell can be specified in two direc-
tions, with two different senses of left and right. For each cell C, we define the twin
cell Twin(C) as the same cell specified in the other direction: p1(Twin(C)) = p2(C),
p2(Twin(C)) = p1(C), l1(Twin(C)) = r2(C), l2(Twin(C)) = r1(C), r1(Twin(C)) =

l2(C), and r2(Twin(C)) = l1(C). Note that Twin(Twin(C)) = C.
The next cell Next(C) of an ECM cell C is the cell that continues along the same

obstacle as C on the left side. It is the cell that lies immediately to the other side of
the line segment l2(C)p2(C). If l2(C) = p2(C), then C ends at a concave obstacle
corner (such as in the top right of Figure 6.2a), and Next(C) = NULL. Likewise, the
previous cell Prev(C) of C is the ECM cell that lies to the other side of l1(C)p1(C).
If l1(C) = p1(C), then C begins at a concave obstacle corner, and Prev(C) = NULL.

An example of Next and Prev is shown in Figure 6.2b. Note that Next and
Prev are dual operations: if Next(C) 6= NULL, then Prev(Next(C)) = C. These
three operations resemble the traversal operations of a doubly-connected edge list
(DCEL) [7]. We assume that they can all be performed in constant time; this is
true for our own implementation of the ECM.

p1

l1 l2

p2

r1,
r2

p1

p1

l1

r1

p2

l2

r2

p2,
l2,r2

r1

l1

(a) Cells

C Next(C)Prev(C)

p1 p2

r1,r2

l1 l2

(b) Cell relations

Figure 6.2: ECM cells and their relations. (a) Three examples of ECM cells are highlighted
in blue. A cell is defined by two bending points, each with a position and a nearest obstacle
point to the left and right. (b) Example of an ECM cell and its next and previous cells.
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6.3.2 Background: Insertion in a Point Voronoi Diagram

Green and Sibson [39] have presented an incremental construction algorithm
for Voronoi diagrams of point sites; this algorithm inserts the point sites one by
one. Given a site p to insert and an existing Voronoi diagram of point sites, the
algorithm iteratively traces the new Voronoi cell of p as follows:

1. Find a Voronoi cell Cj that contains p. This cell identifies a nearest obstacle
pj to p.

2. Calculate the bisector of p and pj . Let i1 and i2 be the two intersection points
of this bisector with the boundary of the cell Cj . See Figure 6.3a.

3. The bisector from i1 to i2 is the first edge of the new cell Cp for p. At i2,
the bisector runs into an adjacent Voronoi cell, say Ck. This cell identifies a
nearest obstacle pk to the point i2. Calculate the bisector of p and pk, and let
the intersections of this bisector with the boundary of Ck be i2 and i3. See
Figure 6.3b.

4. Repeat this process to determine points i3, i4, and so on, until a bisector
endpoint is found that returns to i1. The resulting closed loop of bisectors
will define the boundary of the new cell Cp. See Figure 6.3c.

5. Delete all old vertices and edges inside Cp to obtain the new Voronoi diagram.
See Figure 6.3d.

p

i2

i1

Cj

pj

(a) First edge

pk Ck

i3

p

i1

i2

(b) Second edge

i4

i5

i3

p

i1

i2

(c) Finished loop

Cp

p

(d) Result

Figure 6.3: Inserting a point site p into a Voronoi diagram, as described by Green and
Sibson [39]. The old Voronoi edges are shown in blue; the new edges are shown in red.
The original algorithm built the new cell in counterclockwise order; we show a clockwise
order to emphasize the analogy to our ECM algorithm.

In this algorithm, there is only one type of event: the intersection of a new bisector
with an old Voronoi edge. However, if the neighboring Voronoi sites can be line
segments and polygons, the algorithm becomes more complicated: bisectors can
be parabolic arcs as well as line segments, and extra events occur when a bisector
changes its shape.
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6.3.3 Algorithm

Our algorithm for inserting a point obstacle p into the ECM is conceptually similar
to the algorithm by Green and Sibson, but it uses the ECM cells to conveniently
recognize all events. We trace the new ECM edges around p in clockwise order,
always keeping p on the right side and the other nearest obstacle on the left side.
A summary of the algorithm is shown in Figure 6.4. The full pseudocode is given
in Algorithm 6.1. We will now describe the algorithm in detail.

We start by finding the cell C0 that contains p. We use either C0 or Twin(C0) to
ensure that the nearest obstacle point of C0 to p lies on the left side. Next, we
trace the first ECM edge in two directions (Lines 5–8). We then iteratively trace
the next clockwise edge until the loop of edges around p is closed (Lines 9–12).

p

(a) Point location

p

(b) First edge

p

(c) Second edge

p

(d) Third edge

p

(e) Finished loop

p

(f) Result

Figure 6.4: Inserting a point obstacle p into the ECM. New edges are shown in red. We
build the edges around p one by one, in clockwise order. Bending points (red dots) occur
when an old ECM edge is intersected, or when the nearest obstacle changes between cells.

The subroutine for tracing a single new ECM edge is given in Algorithm 6.3.
We follow the new edge until it intersects an old ECM edge. This is analogous
to tracing a new Voronoi edge until it intersects the boundary of a Voronoi cell.
Algorithm 6.3 iteratively computes the bisector b of p and the current nearest
obstacle on the left side. In each iteration, the bisector b should exit the current
ECM cell C at some point. There are two options:



83

6.3. Inserting a Point Obstacle

(a) The bisector b intersects the existing ECM edge; see Figure 6.5a. If this
happens, the currently traced ECM edge is finished: we add a last bending
point to mark this event, and we return the final list of event points. In the
next iteration, the obstacle on the right side of C will be the new closest
obstacle. Therefore, the next call to TRACENEWEDGE-POINT will start with
Twin(C) as its first cell. This case is handled in Lines 7–12 of Algorithm 6.3.

(b) The bisector b intersects the cell boundary and moves into the next ECM cell.
If this happens, the currently traced edge is not yet finished, and the algorithm
will go to the next cell. However, if this move causes the left obstacle to
change its shape (i.e. from a line segment into a point, or vice versa), the
bisector b will change its shape as well, and we need to add a bending point,
as in Figure 6.5b. If the left obstacle does not change its shape, we simply
proceed without adding a bending point, as in Figure 6.5c. We use a function
ISRELEVANT(bp) to determine (in constant time) whether the left obstacle
changes at bending point bp. The entire case is handled in Lines 13–23 of
Algorithm 6.3.

b

p
i

(a) Edge intersection

b

p
i

(b) Cell intersection 1

b

p

(c) Cell intersection 2

Figure 6.5: An iteration of TRACENEWEDGE-POINT. The bisector b of p and the left obstacle
is shown in red. (a) If b intersects the existing ECM edge at a point i, the new edge ends at
i. (b) If b intersects the cell boundary and the shape of the left obstacle changes, a bending
point will appear at the intersection point i. (c) If b intersects the cell boundary, but the left
obstacle does not change its shape, we simply move to the next cell.

Note that case (a) computes an intersection between two lines, a line and a
parabola, or two parabolas. The first two options are easy to solve algebraically;
the third option is more difficult in general. However, in our case, both bisectors
will always have one nearest obstacle in common (namely the left obstacle), so the
two parabolas will always have either the same focus or the same directrix. This
allows us to compute these intersections algebraically as well.

The overall insertion algorithm ends when a new edge stops at the same position



84

Chapter 6. The Explicit Corridor Map in Dynamic Environments

Algorithm 6.1: INSERTPOINT(ECM, p)
1: edges← an empty list of edges

{Determine the first cell.}
2: C0 ← POINTLOCATION(ECM, p)
3: if p is closer to r1(C0)r2(C0) than to l1(C0)l2(C0)

4: C0 ← Twin(C0)

{Trace the first edge.}
5: (edgel, Cprev)← TRACENEWEDGE-POINT(C0, p, false, NULL)

6: (edger, Cnext)← TRACENEWEDGE-POINT(C0, p, true, NULL)

7: edge0 ← the concatenation of edgel and edger
8: Add edge0 to edges

{Trace the other edges.}
9: while Cnext 6= C0

10: istart ← the position of the last bending point that was added
11: (edge, Cnext)← TRACENEWEDGE-POINT(Cnext, p, true, istart)

12: Add edge to edges

{Update the ECM.}
13: Add all elements from edges to the ECM

14: Remove all ECM edges inside the new edge loop

Algorithm 6.2: BISECTOR(l1, l2, r1, r2)
1: if l1 = l2 and r1 = r2

2: return the line bisector of l1 and l2
3: if l1 = l2 and r1 6= r2

4: return the parabolic bisector of l1 and r1r2
5: if l1 6= l2 and r1 = r2

6: return the parabolic bisector of r1 and l1l2
7: return the line bisector of l1l2 and r1r2
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Algorithm 6.3: TRACENEWEDGE-POINT(C, p, forward, istart)
Input: A starting ECM cell C, the new point obstacle p, a flag forward

(true or false), and the starting point istart of the edge (optional).
Output: A sequence of new bending points describing the new ECM edge

in forward or backward direction; plus the ECM cell in which the next
iteration should start.

1: result← an empty list of bending points
2: if istart 6= NULL

3: Create a bending point at istart and add it to result

4: while true
5: bnew ← BISECTOR(l1(C), l2(C), p, p)

6: bold ← BISECTOR(l1(C), l2(C), r1(C), r2(C))

{Check if bnew intersects the existing ECM edge.}
7: iedge ← the intersection of bnew and bold in the correct direction
8: if iedge 6= NULL and iedge lies inside C
9: Create a bending point at iedge and add it to result

{Return the newly traced edge.}
10: if forward = false
11: result.REVERSE()

12: return (result, Twin(C))

{Otherwise, bnew must intersect the cell boundary.}
13: if forward = true
14: j ← 2

15: else
16: j ← 1

17: if ISRELEVANT(bpj(C))

18: icell ← the intersection of bnew and pj(C)lj(C)

19: Create a bending point at icell and add it to result
20: if forward = true
21: C ← Next(C)

22: else
23: C ← Prev(C)
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where the first edge started. Then, the loop of edges around p is finished. Just
as in the algorithm by Green and Sibson, we remove the ECM edges and vertices
inside this new loop, and we add the new loop to the graph (Lines 13–14).

After this dynamic update of the ECM, the next step is to update the point-
location data structure such that future point-location queries will yield correct
results. The details of this step are highly dependent of the chosen data structure
and implementation; we will not explain it further here. In our experiments in
Section 6.7, we will include this step in our running time measurements.

6.3.4 Complexity

The initial point location query for p takes O(log n) time. The remainder of the
running time depends on how much of the ECM is affected by the update. In the
new ECM, let mi ∈ O(n) be the number of cells traversed while constructing the
new edges around p. All operations in a single cell take constant time; hence, the
traversal takes Θ(mi) time in total. Furthermore, when the new edges have been
created, there are Θ(mi) old edges and vertices to be removed.

Thus, inserting a point obstacle p into an ECM requires O(log n + mi) time,
where mi is the number of visited ECM cells. In practice, mi is often much smaller
than n, and a local insertion is very fast. In the worst case, large parts of the ECM
are affected and mi can be Θ(n), which gives a running time of Θ(n). This is still
asymptotically faster than reconstructing the entire ECM (in O(n log n) time).

Note that this analysis does not yet include the post-processing step in which the
point-location data structure is updated. Depending on the chosen data structure,
the asymptotic complexity of this step may be higher than the complexity of the
insertion itself. Dynamic point-location data structures form a separate research
topic [4, 7, 19]. In general, there is a trade-off between the complexity of a query
and the complexity of an update.

Our own implementation dynamically updates the grid-based point-location
structure described in Section 4.4. The experiments in Section 6.7 will show that
this implementation is fast in practice.

6.4 Inserting a Line Segment or Convex Polygon

We now extend the algorithm from Section 6.3 to handle the insertion of a line
segment or convex polygon O that does not intersect the boundary of Efree. Sec-
tion 6.6 will explain how this algorithm can be extended to non-convex obstacles
and intersecting geometry.

The main difference to adding a point obstacle is that O itself now generates
bending points as well: in the updated ECM, the new edges around O will contain
bending points when they cross the outward normals through the endpoints of O.
This is illustrated in Figure 6.6.
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(a) Line segment (b) Convex polygon

Figure 6.6: The medial axis edges around a line segment site and a convex polygon site.
Compared to point sites, these sites generate extra bending points wherever an edge crosses
an outward normal. These extra bending points are shown in green.

In theory, a line segment site can be inserted into a Voronoi diagram by first
inserting the endpoints of the segment and then its interior [49]. This technique
is used in multiple software libraries for computing Voronoi diagrams of line
segments [48, 78]. A polygon could be inserted by inserting the edges of the
polygon one by one and then (optionally) removing the Voronoi diagram in the
polygon’s interior. In this section, we instead explain how to insert a line segment
or convex polygon using a single algorithm that extends INSERTPOINT.

6.4.1 Algorithm

Algorithms 6.4 to 6.7 give the pseudocode for inserting a line segment or polygon
into the ECM. The parts that are equal to INSERTPOINT are shown in gray; the
differences are shown in black.

The main difference is due to the bending points generated byO: the subroutine
TRACENEWEDGE-POLYGON (Algorithm 6.5) should now consider a third possible
event in each iteration. Just like in TRACENEWEDGE-POINT, the current bisector
b can intersect a medial axis edge or a cell boundary: in these cases, the nearest
obstacle on the left side changes. The new third option is that b intersects a surface
normal through a vertex of O: in this case, the nearest site on the right side
changes. To compute this intersection (if it exists) in constant time per iteration,
the algorithm needs to keep track of the part of O that is generating the current
bisector. This part is always either a vertex or an edge of O, and it changes
whenever the third type of event is triggered.

The other significant difference to INSERTPOINT is the initialization step of the
algorithm, in which we need to find a cell and bisector to start with. For a point
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site p, we found the starting cell C0 by performing a point-location query for p, and
we knew for sure that p would generate a medial axis arc inside C0. For a polygon
site O, the situation is more complicated. A first idea would be to perform a
point-location query for an arbitrary vertex p of O. However, p does not necessarily
generate medial axis arcs in the ECM cell that is found: other points of O may be
closer to the existing geometry than p is. Therefore, an alternative and non-trivial
solution is needed.

Let p∗ be a point on the boundary of O that has (of all boundary points of O)
the smallest distance to any existing obstacle in the environment. Note that p∗

is not necessarily a vertex of O; it can lie anywhere on the boundary of O. Let
n∗ = np(p∗) be the nearest obstacle point to p∗ according to the ECM. As shown
in Figure 6.7, the disk with diameter p∗n∗ must be empty (i.e. obstacle-free):
otherwise, either n∗ would not be nearest to p∗, or there would be another point
of O that is closer to other obstacles. Therefore, the center c∗ of this disk will
have two distinct equidistant nearest obstacle points after O has been inserted. By
definition of the medial axis, c∗ will lie on the medial axis after the insertion. This
makes it a valid starting point for our algorithm.

Thus, to start the dynamic insertion, we need to find p∗ and its nearest obstacle
point n∗. As explained in Chapter 4, for any point q ∈ Efree, the nearest obstacle
point np(q) to q lies on the boundary of the ECM cell that contains q. We can
therefore find p∗ and n∗ by tracing the boundary of O and checking all ECM cells
that are visited during this traversal. Whenever we move to a different cell, we
compute the distance from O to the corresponding nearest obstacle.

This is almost equivalent to performing a mutual visibility query with clearance
(Section 4.3.6) for each edge of O. The difference is that we are now not interested
in the value of the lowest clearance along these edges, but in the point at which
this lowest clearance occurs. This is the point p∗.

We will not provide the pseudocode for this initialization step; instead, Algo-
rithm 6.4 summarizes it as FINDSTARTCELL. This procedure returns the ECM cell
C0 in which p∗ and n∗ are located. It also returns the edge or vertex of O that
contains p∗, given by two points p1 and p2. If p∗ is a vertex of O, then p1 = p2 = p∗.
Otherwise, p1 and p2 are the endpoints of the edge that contains p∗.

6.4.2 Complexity

The algorithm INSERTPOLYGON runs in O(mi + n′ + log n) time, where mi is the
number of visited ECM cells and n′ is the number of vertices of the polygon that is
being added. After all, each of the n′ vertices generates two bending points, as can
be seen in Figure 6.6b. This leads to Θ(n′) more events in total. In each iteration
within TRACENEWEDGE-POLYGON, it takes constant time to check if such an event
occurs, and constant time to handle the event if it does occur.

Finally, we expect that n′ will typically be a small number in practical applica-
tions, i.e. that the new obstacle will have a relatively simple shape.
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O

p∗
n∗

D∗

c∗

Figure 6.7: The starting point for inserting a dynamic obstacle O. We find the point p∗ on
the boundary of O (shown in red), and its nearest obstacle point n∗ (shown in black), as
described in the text. The disk D∗ (purple) must be empty. Therefore, its center c∗ (green)
must lie on a new medial axis edge (blue).

Algorithm 6.4: INSERTPOLYGON(ECM, O)
1: edges← an empty list of edges
2: (C0, p1, p2)← FINDSTARTCELL(ECM, O)

{Trace the first edge.}
3: (edgel, Cprev, p

′
1, p
′
2)← TRACENEWEDGE-POLYGON(C0, O, p1, p2, false, NULL)

4: (edger, Cnext, p1, p2)← TRACENEWEDGE-POLYGON(C0, O, p1, p2, true, NULL)

5: edge0 ← the concatenation of edgel and edger
6: Add edge0 to edges

{Trace the other edges.}
7: while Cnext 6= C0

8: istart ← the position of the last bending point that was added
9: (edge, Cnext, p1, p2)← TRACENEWEDGE-POLYGON(Cnext, O, p1, p2, true, istart)

10: Add edge to edges

{Update the ECM.}
11: Add all elements from edges to the ECM
12: Remove all ECM edges inside the new edge loop

13: Update the point location data structure for future queries
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Algorithm 6.5: TRACENEWEDGE-POLYGON(C,O, p1, p2, forward, istart)
Input: A starting ECM cell C, the obstacle O to insert, the two endpoints

p1 and p2 of O that generate the current bisector, a flag forward (true or false),
and the starting point istart of the edge (optional).

Output: A sequence of new bending points describing the new ECM edge
in forward or backward direction; plus the ECM cell in which the next
iteration should start; plus the part of P that generates the bisector
at the end of this algorithm.

1: result← an empty list of bending points
2: if istart 6= NULL

3: Create a bending point at istart and add it to result

4: while true
5: bnew ← BISECTOR(l1(C), l2(C), p1, p2)

6: bold ← BISECTOR(l1(C), l2(C), r1(C), r2(C))

{Check if bnew intersects a normal of P ; check if it occurs before iedge}
7: inormal ← the intersection of b and NEXTNORMAL(O, p1, p2, forward)

8: if inormal 6= NULL and inormal lies inside C and inormal lies to the left of bold

9: Create a bending point at inormal and add it to result
10: (p1, p2)← NEXTSITE(O, p1, p2, forward)

11: continue

{Check if bnew intersects the existing ECM edge.}
12: iedge ← the intersection of bnew and bold in the correct direction
13: if iedge 6= NULL and iedge lies inside C
14: Create a bending point at iedge and add it to result

{Return the newly traced edge.}
15: if forward = false
16: result.REVERSE()

17: return (result, Twin(C), p1, p2)

{Otherwise, bnew must intersect the cell boundary.}
18: Identical to Lines 13–23 of TRACENEWEDGE-POINT (Algorithm 6.3)
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Algorithm 6.6: NEXTNORMAL(O, p1, p2, forward)
1: if p1 = p2

2: o← p1

3: if forward = true
4: dir← the second clockwise normal of O at p1
5: else
6: dir← the first clockwise normal of O at p1
7: else
8: dir← the left normal of p1p2
9: if forward = true

10: o← p1

11: else
12: o← p2

13: return the half-line with origin o and direction dir

Algorithm 6.7: NEXTSITE(O, p1, p2, forward)
1: if p1 = p2

2: if forward = true
3: p3 ← the vertex of O after p2 (clockwise)
4: return (p2, p3)

5: else
6: p0 ← the vertex of O after p1 (counter-clockwise)
7: return (p0, p1)

8: else
9: if forward = true

10: return (p2, p2)

11: else
12: return (p1, p1)
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6.5 Deleting an Obstacle

We now describe how to delete an obstacle O from the ECM. For Voronoi diagrams
(VDs) of point sites, deletions of sites are well-studied [5, 25, 103, 111]. In
summary, a point site p can be deleted as follows: find the set of sites Np that
generate a Voronoi edge with p (i.e. the Voronoi neighbors of p), compute the VD
of Np from scratch, and replace the old Voronoi cell of p by edges from this new
VD. This is illustrated in Figure 6.8.

p

(a) Before deletion

Np

(b) VD of neighbors (c) After deletion

Figure 6.8: Deleting a point site p from a Voronoi diagram, as described by Devillers [25],
among others. (a) Locate the set Np of neighboring sites of p, which are shown in black.
(b) Compute the Voronoi diagram (VD) of Np. (c) Remove the Voronoi edges around p,
and merge the VD of Np into the main graph.

The same concept applies to deletions of points, line segments, and convex
polygons from the ECM. Let O be the obstacle that needs to be removed, and
assume that it does not intersect other obstacles, such that there is a closed loop of
ECM edges around O. Let ZO be the area enclosed by this loop of edges. We only
need to update the ECM inside (and on the boundary of) ZO because the nearest
obstacles cannot have changed anywhere else. Furthermore, to compute the correct
new ECM inside ZO, we only need the obstacle parts that currently generate an
ECM edge with O. All other obstacles are too far away to suddenly become a
nearest obstacle in ZO. In Chapter 5, we have used (and have proved) similar
arguments for opening a connection in the multi-layered ECM. The remainder of
the deletion algorithm is exactly the same as the algorithm for deleting a point
from a VD.

Let md be the total number of ECM cells on the edges around O. The set of
neighboring obstacle parts NO has size O(md); it can be found in O(md) time
by traversing the ECM edges around O and collecting the obstacle points and
line segments that lie on the other side of these edges. Computing the ECM of
NO takes O(md logmd) time. Combined with an initial point-location query, the
complete algorithm runs in O(log n+md logmd) time. If O has a pointer to one
of its surrounding ECM edges, then the factor O(log n) can be removed because a
point-location query is no longer required.
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Others have shown that deletions can theoretically be performed inO(md) time
for Voronoi diagrams of points [1] or line segments [81]. Their key observation is
that the neighboring sites are already logically ordered around the site to delete;
this extra information allows the VD of these neighbors to be computed more
efficiently. Therefore, it is likely that the running time of our deletion algorithm
can be improved to O(md) time as well. We will not explore this further in this
thesis.

6.6 Extensions

In this section, we discuss how the algorithms from the previous sections can be
extended to handle other types of obstacles and environments. This will be a
high-level discussion in which we sketch possible solutions.

6.6.1 Non-Convex Obstacles

A non-convex polygonal obstacle O is not surrounded by a single loop of ECM
edges. Instead, there are extra ECM edges that run into the concave corners of
O. Therefore, such an obstacle cannot be inserted by using the algorithm from
Section 6.4. Conceptually, the easiest solution is to subdivide O into convex parts
and then inserting these convex parts one by one. In practice, this may be difficult
to implement robustly because the parts of O will have edges in common, which
leads to degenerate cases at which obstacle edges coincide.

Deleting a non-convex polygon O can be achieved by using the algorithm from
Section 6.5. There is one difference, though: points on the boundary of O can now
be Voronoi neighbors. Thus, when collecting the neighboring obstacles of O, we
need to ignore the obstacle points that belong to O itself. The remainder of the
deletion algorithm is conceptually the same as for convex polygons.

6.6.2 Intersecting Geometry

If we want to insert a line segment or polygon obstacle O that intersects the
boundary of Efree, then the new ECM edges around this obstacle will not form a
single loop. When tracing these new edges, the algorithm should pause when the
boundary of O first intersects an obstacle. This a fourth type of event that can be
added to the TRACENEWEDGE-POLYGON routine. Next, the algorithm should follow
the boundary of O until it enters Efree again. At that point, a new edge begins.

Ideally, deleting such an obstacle should only generate ECM edges in the areas
that were obstacle-free before O was added. However, the ECM does not preserve
such ‘history’ information: it knows only which areas are currently walkable. If
the deletion algorithm is based purely on the ECM, it cannot know if there are any
other obstacles ‘below’ O that may become relevant again. The result is that the
entire surface of O will be added to Efree.
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One way to preserve this information is to also maintain the ECM in the interior
of each obstacle. This way, the intersection points of all obstacle boundaries are
also represented in the ECM. A similar approach has been used successfully for
the Local Clearance Triangulation by Kallmann [67]. To know which obstacle
continues where at an intersection point, the ECM bending points should store
references to specific obstacles rather than just obstacle coordinates.

However, this approach complicates the navigation mesh with extra information
about obstacles and about areas that characters cannot reach. Furthermore, it
cannot trivially be extended to multi-layered environments because the obstacle
space of an MLE is defined per layer, and the obstacles of different layers are not
logically connected. In Section 6.8, we will suggest alternative solutions for future
work.

6.6.3 Multi-Layered Environments

Our insertion algorithm also works in the multi-layered environments (MLEs)
from Chapter 5 because the algorithm is based on individual ECM cells and their
relations only. Thus, it does not matter that the overall MLE can overlap itself
when projected onto the ground plane. The dynamic obstacle can even overlap
with a connection and lie in multiple layers; this does not affect the algorithm, as
long as a starting point for the insertion can be found.

As stated in Chapter 5, if we want to ensure that each ECM edge belongs to a
single layer, we need to split edges where they intersect a connection. We can do
this either during the update itself (as an extra type of event in TRACENEWEDGE-
POLYGON) or in a post-processing step.

In general, a dynamic deletion from an MLE is more difficult, for reasons similar to
why opening a connection (Section 5.6) is an involved process. If the neighboring
obstacles of the dynamic obstacle O all lie in the same layer, then our 2D deletion
algorithm will work immediately. However, if the neighboring obstacles lie in
multiple layers, projecting them all onto the ground plane P may produce incorrect
results, just like in the naive algorithm from Section 5.6.

To prevent this, we would need to include all relevant connections as neighbor-
ing obstacles, construct the ECM of these neighbors with all connections closed,
and then open the connections as in Chapter 5. We leave the details of such
an algorithm for future work. Our experiments in Section 6.8 will focus on 2D
environments only.

6.7 Experiments and Results

We have implemented our algorithms for dynamic updates in our ECM software,
and we have performed experiments to measure the efficiency of these algorithms.
This section describes these experiments and their results.



95

6.7. Experiments and Results

A dynamic deletion involves the construction of an ECM for a set of neighboring
obstacles. For this step, we used the Boost-based implementation of the ECM
construction algorithm, described in Section 4.4.

6.7.1 Inserting and Deleting Random Points

The main purpose of our first experiment is to show that a local update is often
faster than a complete reconstruction of the ECM. We tested the performance of
insertions and deletions of point sites in an environment of 100× 100 m with only
a bounding box. One point at a time, we obtained a uniformly sampled random
position p with a distance of at least 0.2m to the bounding box and to all previously
added points, and we dynamically inserted a point obstacle at p into the ECM. We
repeated this process, thus gradually increasing the complexity of the environment,
until 500 points had been added. Next, we deleted the obstacles from the ECM in
opposite order. We repeated the experiment 25 times, with a different set of points
each time.

The running times are shown in Figure 6.9a. Dynamic insertions took 0.09 ms
on average (σ = 0.01); dynamic deletions took 0.51 ms on average (σ = 0.02). For
comparative purposes, we performed a similar experiment in which we recomputed
the ECM from scratch in response to each point insertion, using the Boost-based
ECM implementation. This time, the running time quickly increased with the
number of points, as shown in Figure 6.9b. This confirms that local updates are
useful, especially if the environment grows in complexity.

Figure 6.9a suggests that the running times of our local algorithms remain
roughly constant, regardless of the number of obstacles in the environment. In
theory, though, dynamic insertions should become gradually slower as the number
of points increases: the initial point-location query adds a O(log n) factor to the
insertion algorithm’s running time. Our running times only appear constant due
to our grid-based point-location data structure combined with a relatively small
number of points. However, the purpose of this experiment was to compare local
updates to complete reconstruction.

6.7.2 Inserting and Deleting Polygons

Next, we locally inserted and deleted polygonal obstacles in the Military and City
environments from Section 4.5. We manually chose these obstacles such that
their dynamic insertions and deletions varied in complexity. The obstacles (27 for
Military and 89 for City) are shown in Figure 6.10. We inserted and deleted the
obstacles one by one: after having inserted an obstacle, we deleted it again before
continuing with the next obstacle. Thus, the environments always contained at
most one dynamic obstacle at a time.

The average insertion and deletion times per obstacle (averaged over 25 runs)
are shown in Figure 6.11. In Military, all insertions took below 0.5 ms on average,
and deletion times varied between 0.5 ms and 2.7 ms depending on the complexity
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(b) Local versus global

Figure 6.9: Running times for insertions and deletions of random point obstacles in an
empty environment. (a) The horizontal axis denotes the number of point obstacles that
were in the environment at the time of insertion or deletion. The vertical axis denotes the
running time (in milliseconds) for dynamically inserting or deleting the next point obstacle.
(b) The same running times compared to recomputing the ECM from scratch.

of the dynamic event. In City, we could create more complex situations by drawing
long obstacles that span a large part of the environment. Here, the most ‘difficult’
obstacle had a loop of 163 ECM cells around it; on average, it took 2.4 ms to insert
and 9.6 ms to delete. Most other obstacles had a smaller influence: between 10
and 60 ECM cells, insertion times below 1 ms, and deletion times below or around
3 ms. For comparison, constructing the ECM from scratch takes around 6.7 ms and
130 ms for Military and City, respectively (see Section 4.5). Thus, even our most
complex dynamic updates were faster than completely reconstructing the ECM.

Because the navigation mesh can be updated dynamically within milliseconds,
our algorithms make the ECM suitable for real-time crowd simulation in dynamic
environments. In Chapter 8, we will study the problem of re-planning paths in a
dynamic navigation mesh.

Chapter 10 will describe how an overall crowd simulation framework can
process dynamic updates and re-planning queries during a real-time simulation.
Processing the dynamic update immediately may briefly slow down the simula-
tion, especially if the crowd is large. By contrast, distributing the updates and
re-planning queries over time (possibly in separate threads) can prevent these
‘hiccups’, but it implies that characters will not respond immediately.

6.8 Conclusions and Future Work

In modern games and simulations that feature (crowds of) virtual characters, the
environment can change dynamically: obstacles can appear, disappear, or move at
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(a) Military (b) City

Figure 6.10: The test environments, their medial axis (shown in blue), and their dynamic
obstacles (shown in semi-transparent red). The nearest-obstacle annotations of the ECM
have been omitted for clarity.
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(b) City

Figure 6.11: Running times for insertions and deletions of polygons in (a) Military and (b)
City. Each data point corresponds to one of the obstacles in Figure 6.10. The horizontal
axis denotes the number of ECM cells in the loop of ECM edges around a dynamic obstacle.
The vertical axis denotes the running time (in milliseconds) for dynamically inserting or
deleting an obstacle.
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run-time. When this happens, the navigation mesh that represents the free space
should be updated, preferably in an efficient manner.

In this chapter, we have presented algorithms that update the Explicit Corridor
Map (ECM) navigation mesh from Chapters 4 and 5 when an obstacle has been
added or removed. Our algorithms are based on existing algorithms for insertions
and deletions of sites in Voronoi diagrams. In a 2D environment of complexity n, a
convex polygon with n′ vertices can be inserted into the ECM in O(mi +n′+ log n)

time, where mi ∈ O(n) is proportional to the number of edges that are added
and removed. An obstacle can be deleted in O(log n + md logmd) time where
md is the number of ECM cells around the obstacle. Our experiments show that
our implementation of these algorithms can update the ECM within milliseconds,
which is generally much faster than recomputing the navigation mesh from scratch.
Therefore, our local algorithms can be used to model environments with multiple
dynamic obstacles in real-time.

After the navigation mesh has been updated, the characters in the simulation
need to re-plan their paths. A naive but correct solution is to re-plan all paths from
scratch. In Chapter 8, we will present Dynamically Pruned A*, a variant of the A*
search algorithm optimized for handling dynamic events.

Discussion and future work. As discussed in Section 6.6, our algorithms currently
have a number of limitations. Some of these limitations can be overcome, but
others are inherent to the fact that we use only the navigation mesh and not
the original geometry of the environment. In particular, it is difficult to handle
arbitrary deletions in multi-layered environments, or deletions of obstacles that
overlap with other obstacles.

Furthermore, although our algorithms are theoretically simple, we have experi-
enced that they are difficult to implement robustly. Our current implementation
works in almost all cases, but a dynamic update may still sporadically fail, mainly
due to our use of imprecise floating-point numbers. This makes the implementa-
tion slightly risky for applications in which not all possible events can be tested
beforehand. It also prevented us from performing experiments with e.g. hundreds
of thousands of points sites, which has been done successfully before [143]. It is
difficult to create robust implementations of Voronoi diagram operations or geo-
metric algorithms in general. Existing techniques for numerically robust Voronoi
diagram construction [49, 59, 78, 143], such as the use of exact number types,
can most likely be applied to improve our implementation in the future.

An alternative solution would be to recompute the ECM of the entire environ-
ment, e.g. in a separate thread while the simulation keeps running. Of course, this
implies that characters cannot immediately respond to the update. We may be able
to improve performance by pinpointing the area in which the ECM changes and
then recomputing the ECM from scratch in this area only. Such a ‘hybrid’ method
would be an interesting alternative to the algorithms from this chapter. It may
be easier to implement based on existing robust software libraries, and it would
automatically support the extensions from Section 6.6.
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7
A Comparative Study of
Navigation Meshes

In this chapter, we develop ways to measure the quality of a navigation mesh and
its construction algorithm for an input environment. We use them to compare
various state-of-the-art navigation meshes, including the ECM, for a range of 2D
and 3D environments.

This chapter is based on the following publication:

• W. van Toll, R. Triesscheijn, M. Kallmann, R. Oliva, N. Pelechano, J. Pettré,
and R. Geraerts. A comparative study of navigation meshes. In Proceedings of
the 9th ACM SIGGRAPH International Conference on Motion in Games, pages
91–100, 2016. [152]

7.1 Introduction

As indicated in Part I of this thesis, modern simulations and games feature increas-
ingly large crowds of moving virtual characters. This leads to many queries related
to e.g. path planning, path following, point location, and collision avoidance [151].
The simulation is expected to run in real-time despite all these demands. This
stresses the need for high-quality data structures and algorithms.

In our domain, the virtual environment can be three-dimensional, but charac-
ters are constrained to surfaces that are sufficiently flat to walk on. The walkable
surfaces of an environment form the free space Efree. A navigation mesh is a repre-
sentation of Efree as a set of (usually polygonal) regions, along with a graph that
describes how these regions are connected. For path planning, characters first find
an optimal path in the graph and then compute a suitable geometric route through
the corresponding regions.

Various state-of-the-art navigation meshes exist that are automatically con-
structed from the input geometry, but there is no standardized way of evaluating
or comparing them. Each navigation mesh implementation is in a different state
of maturity, has been tested on different hardware, uses different example environ-
ments, and may have been designed with a different application in mind. To steer
subsequent research into interesting directions, an objective comparison between
navigation meshes is required.

In this chapter, we conduct the first comparative study of navigation mesh imple-
mentations by using the same hardware, quality metrics, and input environments
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(a) LCT (b) ECM (c) CDG

(d) Recast (e) NEOGEN (f) Grid

Figure 7.1: Navigation meshes computed for the Military environment. Regions are shown
in different colors. The corresponding graphs have been omitted for clarity.

for all methods. Our study includes the Local Clearance Triangulation (LCT)
[67], the Explicit Corridor Map (ECM), the Clearance Disk Graph (CDG) [121],
Recast Navigation [102], NEOGEN [114], and a grid. To convey a first impression,
Figure 7.1 shows the output of each navigation mesh for one 2D environment.

We propose a way to objectively measure and compare the quality of navigation
meshes for 2D and 3D environments. Because navigation meshes have many
applications with different requirements, it is difficult to propose a single criterion
that can identify ‘the best’ navigation mesh. Instead, we present a collection of
criteria, each of which is relevant for particular applications.

Our main goal is not to expose which navigation mesh implementation works
best in general; each navigation mesh may have advantages in particular envi-
ronments. By comparing navigation meshes using a common test platform and
settings, we expect that this work will set a standard for the analysis and evaluation
of navigation meshes, that it will help developers choose an appropriate navigation
mesh for their application, and that it will steer research on navigation meshes in
interesting directions.

The remainder of this chapter is structured as follows:

• Section 7.2 describes the relevant related work on navigation meshes and
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comparative studies.

• Section 7.3 gives general definitions of environments and navigation meshes
to enable an objective comparison.

• Section 7.4 proposes theoretical properties by which the data structures and
algorithms of navigation meshes can be classified.

• Section 7.5 uses these properties to analyze and compare various state-of-
the-art navigation meshes.

• In Section 7.6, we present quantitative metrics to measure the quality and
performance of a navigation mesh implementation for an input environment.
In particular, we introduce and address the concept of coverage in 3D.

• In Section 7.7, we combine these metrics into a benchmark tool, and we use
it to compare state-of-the-art navigation mesh implementations in a range of
2D and 3D environments.

• Section 7.8 summarizes the chapter and lists a number of interesting direc-
tions for future research.

7.2 Related Work

This section summarizes the most relevant related work on navigation meshes and
comparative studies. For more general references on navigation meshes in 2D and
3D, we refer the reader to Chapter 2.

7.2.1 Navigation Meshes in 3D

In Section 2.3, we have explained that there are two categories of construction
algorithms for 3D navigation meshes. We will briefly repeat and rephrase this
explanation here.

Voxel-based methods [24, 102, 114, 121] usually take an unprocessed 3D
environment as their input. They discretize the environment into a 3D grid
of voxels using GPU techniques, extract the voxels that correspond to walkable
regions, and summarize this information in a navigation mesh that approximates
the geometry of Efree. Voxel-based methods can handle arbitrary 3D geometry with
imperfections such as intersections or small gaps between polygons. However, the
precision and efficiency of these methods depends to a certain degree on the grid
resolution. The quality of the navigation mesh depends on how well the free space
is extracted from the 3D geometry.

Exact methods [33, 43, 67, 112, 153, 156] require that the exact geometry of
Efree is known, and that this free space has been pre-processed into one or more
planar layers. In exchange, they represent their input precisely, and they often have
provable worst-case construction times and storage sizes, which implies better
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scalability to large environments. However, extracting Efree from a 3D environment
without using approximations is still a topic of ongoing research [123].

7.2.2 Comparative Studies

Our comparative study of navigation meshes is inspired by comparisons for other
aspects of path planning and crowd simulation.

Sturtevant [139] has developed a test set of environments for 2D grid-based
path planning. This set includes mazes of various complexities and levels from
computer games, and it is often used to analyze variants of the A* search algorithm
[45]. Although we study general navigation meshes rather than grids, we will also
include grid-based environments in our experiments.

SteerBench [135] focuses on local behavior such as collision avoidance. It
presents a comprehensive set of scenarios that local methods are expected to
solve, such as two characters crossing paths, or characters switching places in
a narrow corridor. Given the output of a crowd simulation for such a scenario,
SteerBench can compute metrics such as the distance that all characters traverse
and the amount of energy that they spend. However, the results need to be put
in perspective because steering methods typically have many parameters and
implementation choices.

In this chapter, we compare navigation meshes in a similar way based on
metrics, input environments, and a single test platform. We will see that parameter
settings are influential in our study as well.

7.3 Definitions

In this section, we give definitions of environments and navigation meshes.

7.3.1 Environments

Our comparative study focuses on the same types of environments as Chapters 4
and 5. To make the remainder of our comparative study easier to follow, we will
briefly repeat the definitions from these chapters.

A 3D environment (3DE) is a raw collection of polygons in R3. A main assumption
is that there is a single direction of gravity ~g throughout the environment, perpen-
dicular to a common ground plane P . The free space Efree of a 3DE is determined
by parameters that describe on which surfaces a character may walk, such as the
maximum slope with respect to ~g.

Characters are typically approximated by cylinders. Some navigation meshes
use a predefined character radius to determine Efree. In this chapter, we will use a
radius of zero to enable an objective comparison to other navigation meshes.
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A walkable environment (WE) is a set of interior-disjoint polygons in R3 on which
characters can stand and walk. Thus, a WE represents the free space Efree of a 3DE.
In our experiments, all environments will be WEs, so we know beforehand which
area should be covered by a navigation mesh. This is required for computing the
coverage metrics that will be described in Section 7.6.1.

The main difference to a 2D environment is that a WE can overlap itself when
projected onto the ground plane P , i.e. it is not guaranteed that all surfaces are
visible from a single top view.

Some navigation meshes require the WE to be subdivided into 2D components. A
multi-layered environment (MLE) [121, 153] is a subdivision of a WE into layers
such that the walkable polygons of each individual layer are non-overlapping
when projected onto P . The layers are connected by line segments. An example is
shown in Figure 7.2a. In our experiments, we will subdivide all WEs into layers to
facilitate the construction of navigation meshes.

Finally, for 2D environments, the definition used in this chapter is slightly different
to that of Chapter 4 because we want to treat 2D environments and WEs similarly.
Therefore, we define a 2D environment as a bounded subset of the 2D plane with
a polygonal boundary and polygonal holes; we refer to these holes as obstacles.
Unlike in Chapter 4, we will not consider point or line segment obstacles. The
obstacle space Eobs is the union of all obstacles. Its complement is the free space
Efree. The complexity of E is the number of vertices n required to define Eobs or Efree

using simple polygons.
We will embed our 2D environments in R3 by assigning a height component

of zero to each vertex. This way, a 2D environment is a special case of an MLE
with only one layer (or, equivalently, a WE that can be projected onto P without
overlap).

7.3.2 Navigation Mesh

Now that we have a definition of the free space Efree, we can define a navigation
mesh as a tupleM = (R,G):

• R = {R0, R1, . . .} is a collection of geometric regions in R3 that represents
Efree. Each region Ri is P -simple, by which we mean that a region cannot
intersect itself when projected onto the ground plane P .

• G = (V,E) is an undirected graph that describes how characters can navigate
between the regions in R.

Figure 7.2b shows an abstract example of a navigation mesh.
For many navigation meshes, R consists of non-overlapping simple polygons,

and G is the dual graph of R, with one vertex per region and one edge per pair
of adjacent region sides. However, other possibilities exist. In the Clearance Disk
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(a) Multi-layered environment (b) Navigation mesh

Figure 7.2: (a) A simple multi-layered environment. This example was also used in Chap-
ters 2 and 5. (b) A navigation mesh is a description of the environment for path planning
purposes. It consists of walkable regions and a graph that describes their connectivity.

Graph [121], R consists of overlapping disks, and G contains an edge wherever
two disks overlap. The Explicit Corridor Map [153] is explicitly defined as a graph,
and the mesh regions can be derived from its annotations. Still, all meshes have in
common that R and G can be obtained from their representation in some way.

In Chapters 2, 3 and 5, we have explained that it is common for a navigation
mesh to ignore height differences along a path during planning because all indi-
vidual surfaces are sufficiently flat. More specifically, the length of an edge in G
is often computed using a projection onto the ground plane P . Therefore, in this
chapter, we will not judge a navigation mesh by its precise preservation of height
differences. We will only assume that the height coordinates in R are sufficiently
close to the height coordinates in Efree that they represent, to such a degree that
the regions of R can unambiguously be mapped back onto Efree if desired.

7.4 Properties of Navigation Meshes

In this section, we propose a set of properties that describe a navigation mesh’s
data structure, algorithms, and limitations. These properties do not depend on a
specific implementation or environment. They can serve as a ‘checklist’ to simplify
choosing an appropriate mesh for a particular application. In Section 7.5, we will
use these properties to compare various navigation meshes.

Region type The type of regions in R, e.g. triangles or disks.

Graph type A description of the path planning graph G, e.g. ‘the dual graph of R’
or ‘the medial axis of Efree’.

Overlap Whether or not the regions in R can overlap by definition. Having
overlapping regions is generally discouraged because geometric algorithms
that assume non-overlapping regions may not work properly. Also, a query
point (or an agent) can be in multiple regions at the same time in case of
overlap, which may complicate path planning and crowd simulation.
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Pipeline The environment processing pipeline performed by the construction
algorithm, e.g. ‘from a 2D environment to a navigation mesh’ or ‘from a 3DE
via an MLE to a navigation mesh’. We also indicate whether this pipeline is
voxel-based or exact.

Parameters The parameters that the user needs to set for the construction al-
gorithm of the navigation mesh. Having fewer parameters implies a more
automated process for computing the mesh. These parameters are often
related to the filtering process that extracts the walkable surfaces from the
3D geometry.

Computational complexity The asymptotic construction time of the navigation
mesh. This is usually expressed in terms of the environment complexity or a
grid resolution.

Storage complexity The asymptotic size of the navigation mesh data structure.

Clearance Whether or not the navigation mesh supports the computation of
paths with an arbitrary clearance from obstacles, i.e. paths for disks with an
arbitrary radius.

Dynamic updates Whether or not the navigation mesh supports dynamic inser-
tions and deletions of obstacles.

7.5 Theoretical Comparison

We now describe and compare the state-of-the art navigation meshes that will also
be included in our experiments in Section 7.7. The first two navigation meshes are
exact; the others are voxel-based and cover the full 3D pipeline. Although more
navigation meshes exist, we currently include only the navigation meshes that are
designed specifically for the environments described in Section 7.3, and for which
we could obtain robust source code from their respective authors.

Table 7.1 summarizes each navigation mesh based on the properties from
Section 7.4. An example of the output for each method is shown in Figure 7.1.

7.5.1 Local Clearance Triangulation

The Local Clearance Triangulation (LCT) by Kallmann [67] subdivides a 2D en-
vironment of complexity n into O(n) triangles with all vertices on the boundary
of Efree. These triangles are the regions of R, and G is their dual graph. Each
triangle edge is annotated with clearance values that denote the smallest distance
to obstacles when a character would cross this edge. Therefore, during path
planning, the LCT can determine in constant time whether a particular move is
collision-free for a character with a particular radius.
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The triangles of the LCT need to adhere to certain local constraints in order for
their clearance annotations to work. The LCT is constructed by first computing
a constrained Delaunay triangulation in O(n log n) time, and then applying O(n)

refinements until all constraints are satisfied. This sequence of refinements may
take O(n2) time in the worst case. According to Kallmann (by personal communi-
cation in July 2016), the tested implementation runs in O(n

√
n) expected time by

using a special point-location method. The LCT also supports dynamic updates. An
extension to MLEs has not been developed, but an approach similar to the Explicit
Corridor Map (Chapter 5) should be possible.

The LCT takes a set of 2D line segment constraints as input, so our benchmark
program first needs to compute the boundary segments of an environment. The
output of the LCT program is a set of constrained and unconstrained segments. We
need to convert this to a set of triangles such that the triangles inside the obstacle
space are filtered out. These pre-processing and post-processing steps will not be
included in our time measurements.

7.5.2 Explicit Corridor Map

The ECM from Chapters 4 and 5 is an exact navigation mesh. Its graph G = (V,E)

is the medial axis of Efree, where V contains the medial axis vertices of degree
1, 3, or higher. Each edge in E is a sequence of medial axis arcs between two
vertices of V . An edge consists of its two endpoints and a sequence of bending
points at which the medial axis changes shape. These points are all annotated with
their nearest obstacle point on the left and right side of the medial axis. These
annotations induce a subdivision of Efree into polygonal regions. Each region in R
is a (possibly non-convex) polygon of at most 6 distinct vertices.

Because the distance to the nearest obstacle is known at each bending point, the
ECM can be used to plan paths for characters of an arbitrary radius. Furthermore,
the nearest obstacle point for any query point q can be found in constant time
when the region that contains q is known, which is not true for arbitrarily chosen
regions. The ECM also supports dynamic updates.

For a 2D environment of complexity n, the ECM has size O(n) and is computed
in O(n log n) time. For an MLE with k connections, the medial axis has size
O(n) and can be computed in O(n log n log k) time by iteratively opening the
connections. Our ECM construction software described in Chapters 4 and 5 is fast
and robust. It runs in O(kn log n) time, and it splits ECM edges whenever they
intersect a connection, which yields a size ofO(kn). In exchange for its advantages,
the ECM is conceptually slightly more difficult than e.g. a triangulation; it may be
a less intuitive choice at first sight.

7.5.3 Clearance Disk Graph

Pettré et al. [121] presented the first voxel-based navigation mesh for 3D environ-
ments. They introduced many new concepts that have evolved in later algorithms.
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This navigation mesh does not have an official name; in this chapter, we refer to it
as the Clearance Disk Graph (CDG).

The CDG uses voxelization to approximate the areas where characters can
stand. Next, the voxels are extracted for which the clearance (the distance to the
nearest obstacle) is locally largest. These form an approximation of the medial axis
of Efree, and each cell has an obstacle-free disk associated to it. A subset of these
cells is chosen such that their disks overlap but do not contain each other’s center
points. The resulting disks are the regions of R, and the graph G has a vertex for
each disk and an edge for each pair of overlapping disks. A disadvantage of the
CDG is that its disks can never fully cover the free space. Extra disks (that do not
lie on the medial axis) can be added to improve coverage.

The asymptotic construction time of the CDG is difficult to assess because the
algorithm relies on rendering techniques. Also, the number of disks cannot be
expressed in terms of the environment complexity, but it is at least limited by the
number of voxels S.

7.5.4 Recast

The Recast Navigation toolkit by Mononen [102] also uses voxelization to ap-
proximate Efree. However, unlike the CDG, Recast converts the walkable voxels
to non-overlapping convex polygonal regions. The method offers many detailed
settings for this conversion, e.g. for tracing obstacle boundaries, grouping adjacent
polygons, and discarding regions that are too small. This large number of parame-
ters complicates a comparative study because each environment may have its own
optimal settings. Another parameter is the character radius, which is subtracted
from the navigation mesh during its construction. As mentioned, we will use a
radius of zero to allow a fair comparison to other methods.

Recast computes two versions of the navigation mesh: a coarse mesh that is
used for path planning, and a detailed mesh that captures height differences more
accurately. In our experiments, we will use the coarse mesh to determine the
regions R and the graph G, and the detailed mesh to measure how well the result
covers Efree.

Recast does not provide theoretical guarantees of running times, accuracy, or
storage size. On the other hand, the source code of Recast is considered to be very
mature: it is fast, robust, and a popular choice for game development. A variant of
Recast is included in the popular Unity3D game engine [158].

7.5.5 NEOGEN

The NEOGEN method by Oliva and Pelechano [114] also starts with voxelization,
but it then groups the walkable voxels into 2D layers, which yields an approxima-
tion of an MLE. For each layer, NEOGEN uses GPU techniques to obtain a more
precise floorplan in a way that does not depend on the voxel size. Compared to
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Recast, the overall precision of NEOGEN is therefore less dependent on the grid
resolution.

Based on these floorplans, an exact 2D algorithm (ANavMG) [112] is used to
compute the navigation mesh for each layer. This 2D algorithm subdivides the
free space of a layer into convex polygons. For each convex obstacle corner, the
algorithm draws line segments to other obstacles within an angular range. This
algorithm runs in O(nr) time, where n is the total number of obstacle vertices,
and r ∈ O(n) is the number of convex obstacle corners. Finally, the navigation
meshes of each layer are merged into a single data structure. In our experiments,
for simplicity, we will use the ‘full’ voxel-based method in both MLEs and 2D
environments.

A contribution of NEOGEN is the convexity relaxation parameter that can be
used to allow slightly non-convex regions. This decreases the total number of
regions in exchange for having more complex region shapes. NEOGEN does not
use a predefined character radius, and its regions do not encode clearance infor-
mation by default. However, Oliva and Pelechano have explained how clearance
information can be added to the navigation mesh if desired [113].

7.5.6 Grid

As a baseline for our comparison, we have implemented a simple grid method.
It voxelizes the environment similarly to Recast and NEOGEN, but it uses the
walkable voxels directly as navigation mesh regions. Therefore, each region in R
is a square.

We include this method because grids are still frequently used for path planning.
They are easy to implement and a common choice for games that are grid-based
by design [139]. Another advantage is that algorithms such as A* search can be
optimized for grids [32, 44, 95, 140]. Many variants of A* are either designed
with grids in mind [15] or explained in terms of grids [85, 86, 97]. However, grids
are typically more dense than other navigation meshes (e.g. they require many
cells to represent large open spaces), which makes them less suitable for planning
many paths in real-time. Also, a high grid resolution is required if the environment
contains many details.

7.5.7 Comparison

The distinction between exact and voxel-based navigation meshes is clear. If an
application features 3D geometry that has not yet been pre-processed into planar
layers, then an exact navigation mesh is currently not sufficient. On the other hand,
scalability and precision are clear advantages of exact methods. We expect that
voxel-based approaches cannot achieve perfect coverage when an environment
contains many details.

The LCT and ECM seem similar: they are exact, they do not require any
parameters, they encode clearance information, and their size isO(n). A difference
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is that the ECM currently supports MLEs as well. Also, the ECM construction
algorithm has a better asymptotic worst-case construction time, but this difference
might only be noticeable at a very high complexity. Therefore, we expect that the
two algorithms will perform similarly in practice.

NEOGEN and Recast use comparable voxel-based techniques and they both
yield convex polygonal regions. Recast has more parameters: it aims at a semi-
automatic construction process in which the user tweaks parameters to achieve
the desired result. The main advantages of NEOGEN are its techniques to obtain
a higher precision per layer, the use of an exact 2D algorithm, and the convexity
relaxation parameter. An advantage of Recast is the maturity of its code base.

The CDG has similar parameters to NEOGEN, but its representation with
overlapping disks is different. In polygonal environments, disks cannot cover
the free space completely. However, the advantage of disks is that they trivially
encode clearance information. Another aspect to take into account is that the CDG
source code is not optimized for e.g. gaming applications. We expect that the other
methods will be more efficient in their current state.

Finally, we expect that our naive grid implementation yields the largest graphs,
and that it does not cover Efree well if the obstacles are not aligned with the grid
cells. Other voxel-based methods use post-processing steps to convert voxels to
smooth regions, which improves coverage and simplifies the graph.

7.6 Quality Metrics for Navigation Meshes

For a navigation meshM = (R,G) that has been constructed for an environment
using a particular implementation, we want to objectively measure the quality.
Many possible evaluation criteria exist, and each application area may have its
own view of what is good or desirable. In this chapter, we choose to focus on the
navigation mesh itself and on the performance of its construction algorithm. We
will present metrics that answer the following questions:

1. (Coverage) How accurately do the regions of R cover the geometry of Efree?
If parts of the free space are not covered, characters might not find a path
in G even though a path exists in Efree. If parts outside the free space are
covered, characters might accidentally find paths through obstacles.

2. (Connectivity) How accurately does the graph G represent the connectivity
of Efree? This question is related to coverage because it determines whether
or not appropriate paths can be found; however, it concerns topology rather
than geometry.

3. (Complexity) How efficiently doesM represent Efree, i.e. how ‘compact’ is
the mesh? This can refer to the size of the graph G (a smaller graph allows
faster path planning queries) or to the complexity of each individual region
in R (simpler regions allow faster basic operations such as point location). It
depends on the application which property is more desirable.
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4. (Performance) How efficiently isM computed in terms of time and mem-
ory? An efficient algorithm allows the construction of navigation meshes in
interactive applications such as level editors. Even if the navigation mesh is
precomputed in an off-line stage, performance is still desirable.

Of course, many other questions are interesting, e.g. questions related to the
peformance of path planning queries, or to the quality or realism of paths. We will
discuss a number of options in Section 7.8 as suggestions for future work.

Analyzing coverage and connectivity is only useful for voxel-based navigation
meshes that attempt to ‘discover’ Efree themselves; exact methods are known to
yield perfect coverage. Also, some properties can only be analyzed if the ground
truth (the structure of Efree) is known. Therefore, each input environment in our
experiments will be a ‘clean’ walkable environment, i.e. a manifold that contains
only walkable polygons. While this implies that voxel-based methods will not fully
use their advantage of handling raw (non-clean) 3D geometry, we believe that
using the same input for all methods yields a more objective comparison.

Since the outcome of each metric depends on implementation details, the
results should always be judged in combination with the theoretical properties of
Section 7.4.

7.6.1 Coverage

The first set of metrics describes how well the free space is covered. Coverage is a
complicated property to evaluate due to the 3D structure of R and Efree. We need
to introduce a number of concepts before we can define actual metrics. These con-
cepts are based on the assumption that the environment has a consistent direction
of gravity. Coverage is the only category of metrics in which this assumption comes
into play.

Mapping the Navigation Mesh onto the Free Space

Comparing the geometry of R to the geometry of Efree requires us to vertically map
these two structures onto each other. This is straight-forward if the environment
consists of a single layer because everything can then be projected onto the ground
plane P .

However, for general WEs in R3, mapping R onto Efree is ambiguous. In an
abstract sense, there should be a function m such that, for any point p in a
navigation mesh, m(p) vertically maps p to an appropriate point in Efree if possible
(and if not, p is assumed to lie in Eobs). Several choices can be made here, such as
the maximum allowed height difference between p and m(p). We will describe our
own implementation of m in Section 7.7.

Using the functionm, we define a mapped regionR∗i as a regionRi that has been
mapped onto Efree wherever possible, i.e. R∗i = {m(p) | p ∈ Ri and m(p) exists}.
Figure 7.3a shows an example of a region that can only partly be mapped onto Efree.
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Because each mapped region is a subset of Efree, we can use the mapped regions to
define unions, coverage, and overlap. An example is illustrated in Figure 7.3b.

Let the mapped region set R∗ be a version of R in which all regions have been
mapped onto Efree, i.e. R∗ = {R∗i | Ri ∈ R}. The regions in R∗ may overlap: in
that case, some points of Efree are represented more than once.

Efree
R∗

0

?

?

R0

(a) Vertical mapping

Efree

R∗
0

R∗
1

⋃
i R

∗
i

(b) Multiple regions

Figure 7.3: Mapping and coverage. (a) 3D view of a navigation mesh region R0. Only a
part of R0 can be vertically mapped onto Efree. The mapped region R∗0 is highlighted in blue.
(b) Top-view of a different example with two regions R0 and R1. The mapped regions R∗0
and R∗1 highlighted in blue, partly overlap. The union of all mapped regions,

⋃
iR
∗
i , is

well-defined because the mapped regions are subsets of Efree.

Computing the Projected Area

Because we ignore height differences in our problem domain, our coverage metrics
are based on projected areas onto the ground plane P . We define the projected
area of a shape S as follows:

• If S does not overlap itself when projected onto P (i.e. if S is a P -simple
shape as defined in Section 7.3.2), the projected area ||S|| is the signed area
of the projection of S onto P .

• Otherwise, let {S0, . . . , Ss−1} be any subdivision of S into P -simple shapes.
The projected area of S is the sum of projected areas of these components,
i.e. ||S|| = ∑

i ||Si||.
We assume that Efree is given as a subdivision into P -simple shapes, such that
||Efree|| can be computed.

Coverage Metrics

We introduce three coverage metrics. Each metric has a regular version M with
range R≥0 and a normalized version M ′ with range [0, 1], as described below.

Free space covered The area of Efree that is correctly covered by at least one
navigation mesh region. Because the regions in R∗ may overlap and we do
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not want to count overlapping regions twice, we first compute the union of
R∗ in R3. High coverage is desirable: it allows characters to use more of
Efree.

Cov = ||
⋃

i

R∗i || and Cov′ =
Cov
||Efree||

Incorrect area The area of the mesh that could not be mapped to Efree, i.e. the area
of the mesh that ‘overshoots’ Efree and lies in the obstacle space. Intuitively,
this is the difference between R and the part of R that can be mapped onto
Efree. Ideally, the incorrect area should be zero because areas outside Efree

should not be accessible to characters.

Ainc =
∑

i

(||Ri|| − ||R∗i ||) and A′inc =
Ainc∑
i ||Ri||

Note: while it may seem more intuitive to express this metric as ‘the area
of the obstacle space Eobs that is covered’, this would be impossible because
(for WEs in 3D) Eobs does not have an area.

Overlap The amount of overlap among the regions in the navigation mesh. Intu-
itively, overlap is the sum of all region areas minus the area that is covered
at least once. Because coverage is only defined properly inside Efree, overlap
is also based on the mapped region set R∗. The normalized version indicates
which fraction of R∗ is redundant.

Ov =
∑

i

||R∗i || − ||
⋃

i

R∗i || and Ov′ =
Ov∑
i ||R∗i ||

If a navigation mesh is deliberately based on overlapping regions (e.g. [121]),
then this metric simply indicates how much space is covered more than once.
Otherwise, overlap may indicate an implementation bug, which is not the
focus of our comparative study.

7.6.2 Connectivity

The second set of metrics analyzes how well the graph G = (V,E) represents the
dual graph of Efree.

# Connected components The number of connected components in G. Ideally,
this value is equal to the number of connected components in Efree. Having
more components implies that not all adjacencies in Efree are captured. Hav-
ing fewer components implies that regions have been made adjacent when
there are actually obstacles in-between.

# Boundaries The number of environment boundaries perceived by the naviga-
tion mesh. Ideally, this value is equal to the actual number of boundaries
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of Efree. It can be computed by traversing the graph G, checking the corre-
sponding regions in R, and collecting the region edges that are not shared
by multiple regions. The number of boundaries is the number of closed loops
that are traced. Note: if the number of boundaries is perfect, the geometry
of R is not necessarily correct.

7.6.3 Complexity

The third set of metrics measures how efficiently the navigation mesh represents
Efree. The size of G, the number of regions, and the complexity of these regions
may have implications for the efficiency of path planning and crowd simulation.

# Vertices, # Edges The number of vertices and the number of edges in G, i.e. |V |
and |E|. A larger graph implies that path planning queries (and other algo-
rithms that browse the graph) typically take more time to answer. Therefore,
lower numbers imply faster path planning.

# Regions The number of regions in the navigation mesh: |R|. This indicates how
efficiently the free space is represented by elementary parts. It also suggests
how often a character in the simulation may move from one region to another.
Moving to another region typically triggers computational overhead in the
simulation. Hence, having fewer regions may cause some aspects of the
simulation to run more efficiently. Note that |R| = |V | if G is simply the dual
graph of R.

Region complexity The number of floating-point numbers required to describe
the regions in R. Since we treat regions as shapes in R3, we will say that a
polygonal region with p vertices has complexity 3p. A disk has a complexity
of 4 because it can be defined by a center point in R3 and a radius. Naturally,
other choices are possible as well. Some navigation meshes have extra
annotations, such as the maximum allowed radius of a character for an edge
traversal [67]. We will not include such annotations in this metric.

We measure three variants: the average complexity among all regions, the
standard deviation, and the total complexity of all regions combined. A low
region complexity implies that geometric operations within these regions
are computationally cheap. If a mesh has a small number of regions, a low
region complexity, and high coverage, then it is a very efficient description
of Efree.

7.6.4 Performance

The final set of metrics concerns the practical performance of the navigation mesh
implementations. One issue to take into account is that voxel-based methods
perform more steps than exact methods. Another issue is that different implemen-
tations are in drastically different states: some are a ‘proof of concept’ for research
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purposes, while others are highly optimized for the gaming and simulation industry.
Still, these metrics can indicate if an implementation corresponds to the asymptotic
complexity of a navigation mesh, and how well a navigation mesh scales to large
or complex environments.

Construction time The time (in milliseconds) spent on computing the naviga-
tion mesh. Naturally, fast construction is encouraged because it makes the
algorithm suitable for interactive applications.

Memory usage The maximum amount of memory (in MB) used during the execu-
tion of the program. A small value implies that the mesh can be computed in
situations with limited resources, e.g. on a game console with little working
memory.

To obtain more reliable results, we will run each navigation mesh program 10

times and report the average values and standard deviations. This is not needed for
the other categories of metrics because the output of each program is deterministic.

7.6.5 Summary

Table 7.2 summarizes all metrics described in this section. The metrics for coverage
and connectivity are easy to interpret because we know their optimal values.
The metrics for performance are also intuitive: the more efficiently a mesh is
constructed, the better. The complexity metrics are more difficult to judge because
not all values can be minimized at the same time: for example, a small set of
regions will typically imply that the regions themselves are complex.

Finally, we acknowledge that different applications may assign different priori-
ties to each metric. For instance, in games where the mesh needs to be computed
at run-time, it is likely that efficiency and real-time performance are preferred
over exact coverage. By providing all metrics, we leave their interpretation to the
developers of the application at hand.

7.7 Experimental Comparison

In this section, we use our metrics to experimentally compare various navigation
meshes in a range of environments.

7.7.1 Implementation

We have converted each navigation mesh program to a stand-alone executable
that reads an input file, computes a navigation mesh, and returns the result. We
have written a benchmark tool that communicates with these programs, converts
environments between different file formats, and calculates all metrics. Also, the
CDG requires the walkable surfaces to be visible from all sides; to ensure this, we
extrude all input polygons downwards by a small amount.
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Category Metric Range Preferred value

Coverage Free space covered R≥0 Ground truth
Normalized: [0, 1] 1

Incorrect area R≥0 0
Normalized: [0, 1] 0

Overlap R≥0 0
Normalized: [0, 1] 0

Connectivity # Connected components N Ground truth
# Boundaries N Ground truth

Complexity # Graph vertices N As small as possible
# Graph edges N As small as possible
# Regions N As small as possible
Region complexity Total: N As small as possible

Avg/SD: R≥0

Performance Construction time (ms) Avg/SD: R≥0 As small as possible
Memory usage (MB) Avg/SD: R≥0 As small as possible

Table 7.2: Summary of the navigation mesh quality metrics described in Section 7.6.

An important detail is our choice of the mapping function m that is used
to compute coverage. For a point p in the navigation mesh, we define m(p) as
the nearest point in Efree above or below p up to a threshold distance T . The
threshold distance is required to prevent erroneous points of R from getting
mapped onto surfaces that are too far away. We choose a value of T = 1 meter
because the vertical clearance is at least 2 meters in all our test environments.
Admittedly, this choice for m requires that the height coordinates of the navigation
mesh are sufficiently close to the ground truth. It may fail in environments with
gradual yet large height differences that are not captured by the navigation mesh.
(In 2D environments, T can be ignored because a vertical mapping is already
unambiguous.)

We have implemented our coverage metrics using a CGAL-based program [17]
that can compute the intersection of two OBJ files based on the threshold distance
T . For this program, we approximated the disks of the CDG by polygons of 16
vertices. We used inner approximations: the approximated disks were smaller than
the actual disks. This leads to slightly lower numbers for coverage, incorrect area,
and overlap, but the chosen precision is sufficient for comparative purposes.

7.7.2 Parameter Settings

Most navigation meshes are built based on various parameters. For simplicity, we
use one set of parameter settings for all experiments.

Precision. For the CDG, Recast, and NEOGEN, we used voxels of 0.2 meters in
all three dimensions. This is the smallest voxel size at which we could obtain
results in most environments. For the CDG, we enforced a maximum resolution
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of 512 pixels in all dimensions. This kept the construction times manageable for
environments that were too large to allow a precision of 0.2 m.

For the grid baseline method, we reduced the voxel size to 1 × 1 m in the
horizontal plane to prevent the program from taking too much time and memory.
We could keep the voxel height at 0.2 m.

For the CDG, we used a minimum disk radius of 0.1 m (to prevent the method
from generating many small disks) and a maximum disk radius of 100,000 m
(which is essentially infinite in our examples).

Filtering. We have created our input environments such that they are entirely
walkable and no more surfaces need to be filtered out. Therefore, for all voxel-
based methods, we used a maximum surface slope of 60 degrees, a character radius
of 0, and a character height of 0.5 m. These settings ensured that all environments
could (in theory) be covered completely.

Recast offers various other parameters that need to be tweaked for each envi-
ronment to get the best results. Through preliminary experiments, we obtained
the following values that gave good results in most environments: Tiling: Off;
Max climb: 0.5; Min region size: 0; Merged region size: 10,000; Partitioning:
Watershed; Max edge length: 500; Max edge error: 1.3; Vertices per polygon: 6;
Detail mesh sample distance: 6; Detail mesh max error: 1.

Other. To compute ECMs, we used the implementation based on the Boost Voronoi
library [14]. It computes a 2D Voronoi diagram in O(n log n) worst-case time, and
it can process multiple layers of an MLE at the same time by using parallel threads.

For NEOGEN, we used a convexity relaxation parameter of 0. Increasing this
parameter leads to fewer regions (i.e. a smaller dual graph) and a higher region
complexity. Thus, the ‘best’ value for this parameter depends on the application.

7.7.3 Environments

We have computed navigation meshes for the 2D and 3D input environments
shown in Figures 7.4 and 7.5. We have converted each environment to a clean
representation of Efree, subdivided into layers whenever necessary. Most of the 2D
environments have also appeared in Chapter 4. To test for scalability, we have
also added randomly generated 2D mazes of various sizes, inspired by Sturtevant
[139].

The environments in our test set vary in scale and complexity, but it is not yet
a complete set of environments that can expose the strengths and weaknesses of
each navigation mesh. In future work, we will propose a more comprehensive set
of benchmark environments.

7.7.4 Results

As visual examples, the navigation meshes produced by each method are shown
for three of our environments: Military (Figure 7.1), University (Figure 7.6), and
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(a) Military (n = 86,
d = 200× 200)

(b) University (n = 560,
d = 120× 80)

(c) Zelda (n = 437,
d = 100× 100)

(d) Zelda2x2 (n = 1,768,
d = 200× 200)

(e) Zelda4x4 (n = 7,072,
d = 400× 400)

(f) City (n = 2,094,
d = 500× 500)

(g) Maze8 (n = 28,
d = 7× 7)

(h) Maze16 (n = 82,
d = 15× 15)

(i) Maze32 (n = 356,
d = 31× 31)

(j) Maze64 (n = 1,390,
d = 63× 63)

(k) Maze128 (n =

5,574, d = 127× 127)

Figure 7.4: Top views of the 2D environments used in our experiments. The number of
polygon vertices n and the physical dimensions d (in meters) are shown in brackets.
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(a) ParkingLot (n = 120,
d = 36× 21× 9)

(b) Library (n = 489,
d = 59.5× 23.9× 21.1)

(c) Oilrig (n = 1,644,
d = 273.6× 225.6× 84.4)

(d) Neogen1 (n = 5,473,
d = 63.5× 63.5× 15.7)

(e) Neogen2 (n = 1,089,
d = 63.5× 63.5× 31.1)

(f) Neogen3 (n = 672,
d = 63.5× 63.5× 57.4)

(g) Tower (n = 9,677,
d = 34.8× 37.3× 39.2)

(h) BigCity (n = 61,785,
d = 500× 500× 39.2)

Figure 7.5: Renderings of the multi-layered environments used in our experiments. Each
layer of an environment is shown in a different color. Connections between layers are
shown in red. The number of polygon vertices n and the physical dimensions d (width ×
depth × height, in meters) are shown in brackets.
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Library (Figure 7.7). The tables at the end of this chapter contain the quantitative
results for all environments. We have created separate tables for each category
of metrics: coverage (Tables 7.3 and 7.4), connectivity (Tables 7.5 and 7.6),
complexity (Tables 7.7 and 7.8), and performance (Tables 7.9 and 7.10). We will
now highlight the most important observations from these results.

Coverage. We have chosen our parameters to maximize coverage. Still, in terms of
absolute values, the voxel-based methods sometimes missed large areas or covered
large incorrect parts, up to hundreds of square meters in large enviroments.
However, the relative coverage was still high (typically over 90%).

The maze environments are an exception: even though their free space was
perfectly aligned with grid cells of 1× 1m, the CDG and Recast could not capture
them accurately. However, these mazes are quite detailed relative to their size, so
a finer grid resolution could improve the results. NEOGEN generally yielded better
coverage due to its extra processing step per layer. It would be interesting to let
methods automatically choose an appropriate resolution based on a user-specified
balance between coverage and performance. A theoretically stronger alternative
would be to reconstruct Efree without relying on a grid resolution.

For completeness, we have also included the results for the exact methods. As
expected, these methods usually scored perfectly in terms of coverage, with a few
minor exceptions due to small measurement errors.

Connectivity. Recast and NEOGEN captured connectivity quite well for most
environments, except in the mazes where each accidental gap causes parts to
become disconnected. For the CDG, the graph usually contained many connected
components, and gaps in the covered space led to a large number of boundaries.
The grid also contained unexpected gaps at times, due to small errors in the current
implementation. Still, the grid method works sufficiently well for the purpose of a
comparison.

Again, we have also included the results for the LCT and the ECM, for com-
pleteness. These methods usually yielded perfect connectivity values. There were
a few exceptions for the LCT, most likely caused by our own process of converting
Efree to a boundary representation.

It is motivating to see that bad connectivity values corresponded to navigation
meshes that were also visually incorrect. For example, Recast gave overlapping
regions in some mazes, and it accidentally connected layers vertically in the Tower
environment. Still, we acknowledge that metrics can never fully replace visual
inspection.

Complexity. NEOGEN typically yielded the smallest graph in exchange for the
highest average region complexity. This makes sense because the algorithm is
deliberately designed to produce a small number of regions [112]. Its convexity
relaxation parameter could enlarge this effect. The ECM often produced smaller
graphs than the LCT, while the LCT usually had a lower total region complexity.
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Recast appears to average between graph complexity and region complexity
using our current settings. The method contains several parameters (such as
the maximum number of vertices per region) with which this balance can be
controlled. Recast and NEOGEN may not always capture all details of Efree, but this
does generally lead to simpler navigation meshes. This is useful for applications in
which low storage requirements and fast path planning are more important than
perfect coverage. In fact, exact methods could also benefit from a pre-processing
step that simplifies Efree.

As expected, our grid implementation always gave the largest graph, except in
some of the mazes. This confirms that grids are usually inefficient representations,
although we acknowledge their ease of use and their attractiveness for grid-aligned
applications.

Performance. The LCT implementation was by far the fastest in all environments,
although it required pre-processing that we have not included in our measurements.
As expected, exact methods scaled better to large environments than voxel-based
methods: while the LCT and the ECM remained fast, the running times increased
strongly for Recast and the CDG in particular. NEOGEN was usually the fastest
voxel-based method. The BigCity environment challenged the limits of all voxel-
based methods: only Recast could produce a navigation mesh using our settings.
Increasing the voxel resolution caused Recast to crash as well, most likely due to
memory usage. Recast can subdivide the environment into tiles to alleviate this,
but we have currently excluded this extra parameter to simplify our comparison.

The differences in scalability are difficult to judge because voxel-based methods
include the reconstruction of Efree in their algorithm. Combined with the results for
coverage, this indicates that obtaining Efree without voxels is an interesting topic
for future work.

7.8 Conclusions and Future Work

A navigation mesh enables path planning and crowd simulation for walking
characters in 2D and 3D environments. Various navigation meshes exist that can be
computed (semi-)automatically. In this chapter, we have performed a comparative
study of multiple state-of-the-art navigation meshes. We have proposed properties
by which a mesh and its construction algorithm can be classified, and metrics
that measure the quality of a mesh in practice. We have used these components
to compare the Local Clearance Triangulation, the Explicit Corridor Map, the
Clearance Disk Graph, NEOGEN, and a grid.

While we intend to use more environments, metrics, and settings, our results
already suggest interesting properties. Voxel-based methods can be tuned to yield
good coverage, but they do not always preserve connectivity, and their construction
time does not seem to scale well to physically large environments. Furthermore,
grids are usually not space-efficient representations of Efree, although they may be
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attractive for particular applications.
The goal of this chapter was not to find ‘the best’ navigation mesh, but to

develop a way of comparing navigation meshes based on theoretical properties
and quantitative metrics. Users may decide which properties and metrics are
the most relevant for their application. We expect that this study will set a new
standard for the evaluation and development of navigation meshes, and that it can
help users choose an appropriate navigation mesh for particular applications.

Discussion. A limitation of our comparison lies in the current set of input envi-
ronments. We have focused on examples from previous publications; these are
all realistic scenarios that have been considered interesting before. Also, we have
deliberately only used ‘clean’ walkable environments and not raw 3D geometry,
to allow a fair comparison between exact and voxel-based methods for the same
input. Our current goal was not to provide an exhaustive set of environments, nor
to expose all strengths and weaknesses of an implementation. Ultimately, it would
be good to create an open database of input environments for researchers to use,
similarly to the ones that currently exist for local character steering [135] and
grid-based A* search [139].

We would also like to investigate more types of metrics. For instance, it would
be useful to measure the efficiency of a navigation mesh for path planning: how
much time does it take to compute paths in G, and how efficiently can these be
converted to geometric routes using the regions of R? Another option is to look at
the quality of these routes: how short are they, and how well do they correspond
to real-life behavior? If shortness is important, a dense grid may yield better
results than a navigation mesh with a small dual graph. Ultimately, for real-world
applications, we would like to quantify how well a navigation mesh captures the
navigation abilities of real humans. This is a challenging direction for future work.
We expect that not everything can be analyzed mechanically, and that user studies
will also be required.

Finally, to simplify the comparison, we have chosen a single set of parameter
settings for all methods. It would be interesting to see how different settings
influence the results for each method, and how these settings can be optimized for
particular metrics. For example, Oliva and Pelechano have discussed how the voxel
size affects the results of Recast and NEOGEN [114]. We would like to combine
such ideas with the quantitative metrics of this chapter.

Future work. Aside from these discussion points, a topic for future work lies
in developing exact algorithms that automatically extract the walkable space
from arbitrary 3D input in real-time. Our experiments suggest that voxel-based
approaches do not always preserve coverage and connectivity, and that they are
not very scalable to large environments. However, an advantage of voxelization
is that the input is automatically simplified to a certain level of precision. Exact
filtering algorithms should yield a perfect representation of Efree within provable
time bounds, but they may be sensitive to small details or imprecisions in the
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input (such as gaps or overlap). We have used a preliminary version of exact
filtering software to generate some of our input environments, but this program
does not yet achieve real-time performance. In the end, it may turn out that the
best solution is to combine various approaches, e.g. a filtering algorithm without
voxels that is based on rounded coordinates.
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(a) LCT (b) ECM

(c) CDG (d) Recast

(e) NEOGEN (f) Grid

Figure 7.6: Navigation meshes computed for the University environment. Regions are
shown in different colors. The corresponding graphs have been omitted for clarity.
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(a) Ground truth (b) ECM

(c) CDG (d) Recast

(e) NEOGEN (f) Grid

Figure 7.7: Renderings of the navigation meshes computed for the Library environment.
Regions are shown in blue and outlined in black. The corresponding graphs have been
omitted for clarity.



126

Chapter 7. A Comparative Study of Navigation Meshes

Environment Navigation mesh Coverage

Free space covered Incorrect area Overlap
Total area (m2) Absolute Relative Absolute Relative Absolute Relative

Military 36,876.82 LCT 36,876.82 1.00 0.00 0.00 0.01 0.00
ECM 36,876.77 1.00 0.00 0.00 0.04 0.00
CDG 36,198.31 0.98 7.90 0.00 15,613.55 0.30
Recast 36,629.42 0.99 7.27 0.00 0.01 0.00
NEOGEN 36,876.82 1.00 0.00 0.00 0.00 0.00
Grid 36,736.63 1.00 107.37 0.00 0.00 0.00

University 8,370.68 LCT 8,370.68 1.00 0.18 0.00 2.22 0.00
ECM 8,370.68 1.00 0.00 0.00 0.00 0.00
CDG 7,821.35 0.93 11.42 0.00 3,387.29 0.30
Recast 8,106.06 0.97 51.38 0.01 0.00 0.00
NEOGEN 8,370.68 1.00 0.00 0.00 0.00 0.00
Grid 8,335.13 1.00 27.87 0.00 0.00 0.00

Zelda 5,642.25 LCT 5,642.25 1.00 0.00 0.00 0.00 0.00
ECM 5,642.23 1.00 0.00 0.00 0.01 0.00
CDG 5,262.52 0.93 10.40 0.00 2,311.22 0.31
Recast 5,457.23 0.97 35.56 0.01 0.00 0.00
NEOGEN 5,642.24 1.00 0.00 0.00 0.00 0.00
Grid 5,545.39 0.98 135.61 0.02 0.00 0.00

Zelda2x2 22,632.42 LCT 22,632.42 1.00 0.00 0.00 0.00 0.00
ECM 22,632.39 1.00 0.02 0.00 0.02 0.00
CDG 19,364.63 0.86 85.68 0.00 6,790.28 0.26
Recast 21,900.31 0.97 122.55 0.01 0.00 0.00
NEOGEN 22,632.42 1.00 0.00 0.00 0.00 0.00
Grid 22,178.87 0.98 484.12 0.02 0.01 0.00

Zelda4x4 90,529.70 LCT 90,529.69 1.00 0.00 0.00 0.00 0.00
ECM 90,529.58 1.00 0.07 0.00 0.07 0.00
CDG 65,922.95 0.73 842.89 0.01 16,245.82 0.20
Recast 87,652.50 0.97 542.35 0.01 0.00 0.00
NEOGEN 90,529.69 1.00 0.01 0.00 0.00 0.00
Grid 88,679.73 0.98 1,911.23 0.02 0.03 0.00

City 207,518.40 LCT 207,518.40 1.00 0.00 0.00 0.01 0.00
ECM 207,518.10 1.00 0.09 0.00 0.19 0.00
CDG 197,001.40 0.95 302.53 0.00 82,909.38 0.30
Recast 206,304.50 0.99 103.55 0.00 0.40 0.00
NEOGEN 207,518.40 1.00 0.04 0.00 0.00 0.00
Grid 206,050.10 0.99 1,524.91 0.01 0.00 0.00

Maze8 31.00 LCT 31.00 1.00 0.00 0.00 0.00 0.00
ECM 31.00 1.00 0.00 0.00 0.00 0.00
CDG 22.10 0.71 0.35 0.01 6.37 0.22
Recast 23.23 0.75 0.57 0.02 0.00 0.00
NEOGEN 29.00 0.94 0.00 0.00 0.00 0.00
Grid 31.00 1.00 0.00 0.00 0.00 0.00

Maze16 127.00 LCT 127.00 1.00 0.00 0.00 0.00 0.00
ECM 127.00 1.00 0.00 0.00 0.00 0.00
CDG 90.96 0.72 1.77 0.01 35.08 0.28
Recast 100.47 0.79 2.15 0.02 0.00 0.00
NEOGEN 125.00 0.98 0.00 0.00 0.00 0.00
Grid 126.00 0.99 0.00 0.00 0.00 0.00

Maze32 511.00 LCT 511.00 1.00 0.00 0.00 0.00 0.00
ECM 511.00 1.00 0.00 0.00 0.00 0.00
CDG 352.45 0.69 6.36 0.01 74.51 0.17
Recast 418.44 0.82 10.61 0.03 0.00 0.00
NEOGEN 507.00 0.99 0.00 0.00 0.00 0.00
Grid 511.00 1.00 0.00 0.00 0.00 0.00

Maze64 2,047.00 LCT 2,047.00 1.00 0.00 0.00 0.00 0.00
ECM 2,047.00 1.00 0.00 0.00 0.00 0.00
CDG 1,445.65 0.71 25.04 0.01 503.57 0.26
Recast 1,415.99 0.69 28.25 0.02 0.00 0.00
NEOGEN 2,003.00 0.98 0.00 0.00 0.00 0.00
Grid 2,045.00 1.00 0.00 0.00 0.00 0.00

Maze128 8,191.00 LCT 8,191.00 1.00 0.00 0.00 0.00 0.00
ECM 8,191.00 1.00 0.00 0.00 0.00 0.00
CDG 5,066.94 0.62 109.58 0.02 896.21 0.15
Recast 7,464.19 0.91 6,428.45 0.52 4,807.87 0.39
NEOGEN 7,951.00 0.97 0.00 0.00 0.00 0.00
Grid 8,184.00 1.00 0.00 0.00 0.00 0.00

Table 7.3: Results for the coverage metrics in the 2D environments. The descriptions of all
metrics can be found in Section 7.6.
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Environment Navigation mesh Coverage

Free space covered Incorrect area Overlap
Total area (m2) Absolute Relative Absolute Relative Absolute Relative

ParkingLot 1,921.50 ECM 1,921.50 1.00 0.00 0.00 0.00 0.00
CDG 1,819.68 0.95 0.07 0.00 675.84 0.27
Recast 1,849.52 0.96 1.24 0.00 0.00 0.00
NEOGEN 1,920.88 1.00 0.63 0.00 0.00 0.00
Grid 1,861.50 0.97 4.51 0.00 0.00 0.00

Library 3,154.06 ECM 3,153.78 1.00 8.23 0.00 0.00 0.00
CDG 2,951.06 0.94 9.62 0.00 1,108.37 0.27
Recast 3,046.73 0.97 9.14 0.00 0.41 0.00
NEOGEN 3,132.65 0.99 21.41 0.01 0.00 0.00
Grid 2,947.75 0.93 243.26 0.08 0.00 0.00

Oilrig 75,746.52 ECM ? ? ? ? ? ?
CDG 70,551.81 0.93 3,688.22 0.04 27,946.73 0.28
Recast 74,933.66 0.99 124.29 0.00 3.30 0.00
NEOGEN 73,475.38 0.97 2,271.13 0.03 0.00 0.00
Grid 74,183.09 0.98 1,714.92 0.02 0.00 0.00

Neogen1 4,748.44 ECM ? ? ? ? ? ?
CDG 4,341.39 0.91 550.79 0.09 1,731.02 0.29
Recast 4,659.20 0.98 16.38 0.00 7.65 0.00
NEOGEN 4,519.90 0.95 203.78 0.05 0.00 0.00
Grid 4,449.82 0.94 70.04 0.02 0.00 0.00

Neogen2 9,600.56 ECM ? ? ? ? ? ?
CDG 9,237.81 0.96 214.07 0.02 4,120.91 0.31
Recast 9,431.68 0.98 14.29 0.00 5.07 0.00
NEOGEN 9,371.87 0.98 20.71 0.00 0.00 0.00
Grid 9,334.44 0.97 237.17 0.03 0.00 0.00

Neogen3 9,642.51 ECM ? ? ? ? ? ?
CDG 9,349.64 0.97 35.66 0.00 3,884.67 0.29
Recast 9,440.83 0.98 8.82 0.00 0.57 0.00
NEOGEN 9,527.26 0.99 15.06 0.00 0.00 0.00
Grid 9,297.01 0.96 133.04 0.01 0.00 0.00

Tower 12,093.88 ECM ? ? ? ? ? ?
CDG 10,615.44 0.88 141.53 0.01 3,746.06 0.26
Recast 11,672.40 0.97 425.70 0.04 5.26 0.00
NEOGEN - - - - - -
Grid 11,121.91 0.92 945.09 0.09 0.00 0.00

BigCity 280,897.00 ECM ? ? ? ? ? ?
CDG - - - - - -
Recast 277,326.20 0.99 2,820.01 0.01 15.14 0.00
NEOGEN - - - - - -
Grid - - - - - -

Table 7.4: Results for the coverage metrics in the multi-layered environments. An empty
row indicates that the navigation mesh could not be computed for the corresponding
algorithm and environment. A question mark indicates that the navigation mesh exists, but
that our software could not compute its coverage metrics due to memory limitations.
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Environment Navigation mesh Connectivity

#CCs #Boundaries #CCs #Boundaries

Military 1 16 LCT 1 16
ECM 1 16
CDG 3 176
Recast 1 16
NEOGEN 1 16
Grid 1 17

University 1 82 LCT 2 87
ECM 1 82
CDG 274 214
Recast 1 81
NEOGEN 1 82
Grid 1 45

Zelda 1 57 LCT 2 57
ECM 1 57
CDG 609 211
Recast 1 57
NEOGEN 1 57
Grid 1 59

Zelda2x2 1 226 LCT 1 226
ECM 1 226
CDG 9 594
Recast 1 226
NEOGEN 1 226
Grid 1 227

Zelda4x4 1 906 LCT 1 906
ECM 1 906
CDG 244 1,536
Recast 1 906
NEOGEN 1 906
Grid 1 921

City 1 181 LCT 1 181
ECM 1 181
CDG 204 367
Recast 3 183
NEOGEN 4 185
Grid 2 203

Maze8 1 1 LCT 1 1
ECM 1 1
CDG 11 4
Recast 1 1
NEOGEN 2 2
Grid 1 1

Maze16 1 1 LCT 1 1
ECM 1 1
CDG 29 39
Recast 1 1
NEOGEN 3 3
Grid 2 2

Maze32 1 1 LCT 1 1
ECM 1 1
CDG 92 135
Recast 1 1
NEOGEN 11 11
Grid 1 1

Maze64 1 1 LCT 1 1
ECM 1 1
CDG 618 374
Recast 30 11
NEOGEN 45 45
Grid 4 1

Maze128 1 1 LCT 1 1
ECM 1 1
CDG 1,188 3,548
Recast 123 89
NEOGEN 164 164
Grid 8 8

Table 7.5: Results for the connectivity metrics in the 2D environments. ‘#CCs’ is an
abbreviation of ‘number of connected components’. The descriptions of all metrics can be
found in Section 7.6.
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Environment Navigation mesh Connectivity

#CCs #Boundaries #CCs #Boundaries

ParkingLot 1 9 ECM 1 9
CDG 178 81
Recast 2 10
NEOGEN 1 9
Grid 4 11

Library 1 4 ECM 1 4
CDG 256 137
Recast 1 4
NEOGEN 1 4
Grid 1 4

Oilrig 1 26 ECM 1 26
CDG 578 468
Recast 1 29
NEOGEN 1 26
Grid 1 30

Neogen1 3 12 ECM 3 12
CDG 43 176
Recast 3 17
NEOGEN 3 15
Grid 6 46

Neogen2 11 33 ECM 11 33
CDG 175 159
Recast 10 27
NEOGEN 6 27
Grid 10 36

Neogen3 10 20 ECM 10 20
CDG 58 347
Recast 15 22
NEOGEN 10 18
Grid 28 27

Tower 1 19 ECM 1 19
CDG 2,052 1,105
Recast 1 256
NEOGEN - -
Grid 1 225

BigCity 1 301 ECM 1 301
CDG - -
Recast 8 1,796
NEOGEN - -
Grid - -

Table 7.6: Results for the connectivity metrics in the multi-layered environments. An
empty row indicates that the navigation mesh could not be computed for the corresponding
algorithm and environment.
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Environment Navigation mesh Complexity

Region complexity
|V | |E| |R| Average SD Total

Military LCT 120 134 120 9.00 0.00 1,080
ECM 58 72 214 14.83 2.16 3,174
CDG 1,168 2,078 1,168 4.00 0.00 4,672
Recast 101 115 101 11.55 2.88 1,167
NEOGEN 52 66 52 15.40 3.58 801
Grid 36,844 72,755 36,844 12.00 0.00 442,128

University LCT 732 812 732 9.00 0.00 6,588
ECM 329 409 1,134 15.04 2.29 17,055
CDG 3,309 4,369 3,309 4.00 0.00 13,236
Recast 402 481 402 11.88 2.78 4,776
NEOGEN 261 341 261 16.80 8.13 4,386
Grid 8,363 15,460 8,363 12.00 0.00 100,356

Zelda LCT 554 608 554 9.00 0.00 4,986
ECM 289 344 895 14.93 2.30 13,359
CDG 3,579 4,233 3,579 4.00 0.00 14,316
Recast 321 376 321 12.12 2.77 3,891
NEOGEN 205 260 205 16.04 6.31 3,288
Grid 5,681 10,193 5,681 12.00 0.00 68,172

Zelda2x2 LCT 2,248 2,472 2,248 9.00 0.00 20,232
ECM 1,148 1,372 3,602 14.92 2.30 53,754
CDG 5,636 8,850 5,636 4.00 0.00 22,544
Recast 1,281 1,505 1,281 12.16 2.84 15,573
NEOGEN 820 1,044 820 16.15 6.35 13,245
Grid 22,663 40,658 22,663 12.00 0.00 271,956

Zelda4x4 LCT 9,007 9,911 9,007 9.00 0.00 81,063
ECM 4,580 5,484 14,436 14.92 2.30 215,424
CDG 11,996 16,564 11,996 4.00 0.00 47,984
Recast 5,105 6,009 5,105 12.17 2.84 62,148
NEOGEN 3,289 4,193 3,289 16.15 6.36 53,103
Grid 90,591 162,537 90,591 12.00 0.00 1,087,092

City LCT 2,553 2,732 2,553 9.00 0.00 22,977
ECM 1,442 1,621 4,679 14.42 2.16 67,491
CDG 3,451 5,278 3,451 4.00 0.00 13,804
Recast 1,527 1,706 1,527 11.90 3.08 18,168
NEOGEN 1,164 1,343 1,164 13.61 5.17 15,846
Grid 207,575 408,383 207,575 12.00 0.00 2,490,900

Maze8 LCT 26 25 26 9.00 0.00 234
ECM 30 29 51 14.71 2.32 750
CDG 68 59 68 4.00 0.00 272
Recast 14 13 14 11.57 1.05 162
NEOGEN 12 10 12 14.25 3.70 171
Grid 31 30 31 12.00 0.00 372

Maze16 LCT 81 80 81 9.00 0.00 729
ECM 84 83 156 14.85 2.25 2,316
CDG 310 319 310 4.00 0.00 1,240
Recast 42 41 42 11.71 1.44 492
NEOGEN 39 36 39 14.62 3.05 570
Grid 126 124 126 12.00 0.00 1,512

Maze32 LCT 363 362 363 9.00 0.00 3,267
ECM 358 357 686 14.89 2.23 10,212
CDG 1,084 1,138 1,084 4.00 0.00 4,336
Recast 184 183 184 11.77 1.34 2,166
NEOGEN 168 157 168 14.75 2.86 2,478
Grid 511 510 511 12.00 0.00 6,132

Maze64 LCT 1,422 1,421 1,422 9.00 0.00 12,798
ECM 1,392 1,391 2,672 14.88 2.24 39,756
CDG 4,805 4,488 4,805 4.00 0.00 19,220
Recast 602 572 602 11.63 1.45 6,999
NEOGEN 636 591 636 14.74 2.91 9,372
Grid 2,045 2,041 2,045 12.00 0.00 24,540

Maze128 LCT 5,674 5,673 5,674 9.00 0.00 51,066
ECM 5,567 5,566 10,710 14.88 2.24 159,336
CDG 25,135 44,910 25,135 4.00 0.00 100,540
Recast 2,590 2,480 2,590 11.73 2.01 30,393
NEOGEN 2,574 2,410 2,574 14.73 2.98 37,914
Grid 8,184 8,176 8,184 12.00 0.00 98,208

Table 7.7: Results for the complexity metrics in the 2D environments. The descriptions of
all metrics can be found in Section 7.6.
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Environment Navigation mesh Complexity

Region complexity
|V | |E| |R| Average SD Total

ParkingLot ECM 61 68 108 15.08 2.33 1,629
CDG 779 873 779 4.00 0.00 3,116
Recast 60 66 60 11.35 1.98 681
NEOGEN 24 31 24 20.75 4.58 498
Grid 1,866 3,493 1,866 12.00 0.00 22,392

Library ECM 216 218 377 14.51 2.35 5,469
CDG 1,758 2,173 1,758 4.00 0.00 7,032
Recast 111 113 111 12.19 2.65 1,353
NEOGEN 74 76 74 20.64 8.85 1,527
Grid 3,191 5,801 3,191 12.00 0.00 38,292

Oilrig ECM 603 629 1,283 14.72 2.23 18,891
CDG 4,858 6,316 4,858 4.00 0.00 19,432
Recast 324 353 324 12.35 3.08 4,002
NEOGEN 253 279 253 23.44 12.99 5,931
Grid 75,898 147,409 75,898 12.00 0.00 910,776

Neogen1 ECM 438 444 1,148 14.67 2.41 16,842
CDG 1,017 1,651 1,017 4.00 0.00 4,068
Recast 103 114 103 11.80 3.27 1,215
NEOGEN 193 202 193 23.21 28.35 4,479
Grid 4,519 8,494 4,519 12.00 0.00 54,228

Neogen2 ECM 390 403 1,240 14.86 2.32 18,426
CDG 2,170 2,911 2,170 4.00 0.00 8,680
Recast 198 213 198 11.74 2.97 2,325
NEOGEN 295 312 295 15.31 7.11 4,515
Grid 9,571 18,374 9,571 12.00 0.00 114,852

Neogen3 ECM 439 439 984 14.54 2.35 14,304
CDG 2,070 3,319 2,070 4.00 0.00 8,280
Recast 275 276 275 11.66 3.08 3,207
NEOGEN 218 218 218 15.26 8.77 3,327
Grid 9,430 17,962 9,430 12.00 0.00 113,160

Tower ECM 4,988 5,019 9,416 14.37 2.38 135,300
CDG 12,643 14,281 12,643 4.00 0.00 50,572
Recast 1,155 1,437 1,155 12.47 3.02 14,400
NEOGEN - - - - - -
Grid 12,067 21,755 12,067 12.00 0.00 144,804

BigCity ECM 32,167 32,554 69,176 14.41 2.37 997,053
CDG - - - - - -
Recast 9,394 11,345 9,394 12.27 3.11 115,260
NEOGEN - - - - - -
Grid - - - - - -

Table 7.8: Results for the complexity metrics in the multi-layered environments. An empty
row indicates that the navigation mesh could not be computed for the corresponding
algorithm and environment.
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Environment Navigation mesh Performance

Construction time (ms) Memory usage (MB)
Average SD Average SD

Military LCT 0.80 0.40 0.88 0.00
ECM 7.23 0.01 29.99 0.02
CDG 44,256.03 85.58 79.74 0.01
Recast 1,055.51 9.84 24.76 0.00
NEOGEN 15.90 0.70 66.53 0.32
Grid 205.39 2.24 77.88 0.38

University LCT 5.90 0.30 1.16 0.01
ECM 31.14 0.06 33.02 0.02
CDG 27,866.70 17.94 68.72 0.00
Recast 209.72 1.79 9.08 0.00
NEOGEN 94.90 2.51 86.46 3.07
Grid 106.69 1.23 54.05 0.31

Zelda LCT 4.60 0.49 1.07 0.00
ECM 23.53 0.07 32.34 0.01
CDG 28,802.21 26.55 68.47 0.00
Recast 159.42 0.80 8.14 0.00
NEOGEN 59.10 2.39 80.67 0.41
Grid 92.35 0.85 51.69 0.28

Zelda2x2 LCT 19.00 0.77 1.79 0.00
ECM 107.45 0.47 41.89 0.03
CDG 31,915.01 57.39 75.47 0.03
Recast 736.57 3.04 24.00 0.17
NEOGEN 246.60 8.49 125.54 1.80
Grid 201.52 1.97 73.82 0.24

Zelda4x4 LCT 96.21 1.08 4.73 0.00
ECM 438.66 2.81 78.67 0.31
CDG 39,629.89 40.84 105.19 0.01
Recast 3,275.23 8.29 89.36 0.68
NEOGEN 1,040.90 19.45 253.26 2.49
Grid 796.62 13.17 153.34 0.30

City LCT 33.40 0.49 2.11 0.00
ECM 162.69 0.41 45.54 0.02
CDG 44,140.58 380.99 83.88 0.02
Recast 11,833.70 9.93 135.15 0.00
NEOGEN 330.70 6.18 126.86 0.79
Grid 1,431.77 10.35 200.95 3.17

Maze8 LCT 0.20 0.40 0.84 0.00
ECM 1.54 0.01 29.40 0.00
CDG 1,105.43 9.50 32.18 0.01
Recast 1.00 0.00 2.12 0.00
NEOGEN 3.20 0.60 63.72 2.02
Grid 62.39 1.44 41.17 0.17

Maze16 LCT 0.70 0.46 0.88 0.00
ECM 4.28 0.02 29.84 0.01
CDG 2,508.26 9.16 38.90 0.01
Recast 7.30 0.46 2.25 0.00
NEOGEN 9.20 0.75 63.98 2.66
Grid 63.77 1.32 42.09 0.22

Maze32 LCT 3.40 0.49 1.02 0.00
ECM 18.05 0.03 31.87 0.00
CDG 5,458.99 5.88 45.90 0.00
Recast 391.64 0.66 2.83 0.00
NEOGEN 38.90 0.83 77.59 1.89
Grid 72.58 1.51 46.24 0.11

Maze64 LCT 12.50 0.67 1.64 0.00
ECM 70.34 0.25 40.16 0.01
CDG 13,448.17 19.51 55.80 0.01
Recast 11,834.30 11.52 4.64 0.00
NEOGEN 161.30 6.08 109.03 2.69
Grid 94.05 0.62 54.51 0.31

Maze128 LCT 62.21 0.75 3.99 0.00
ECM 306.97 0.63 71.75 0.23
CDG 56,150.68 93.81 92.84 0.01
Recast 52,746.20 19.62 11.19 0.00
NEOGEN 654.80 12.03 199.44 1.89
Grid 250.38 2.70 81.05 0.26

Table 7.9: Results for the performance metrics in the 2D environments. The descriptions of
all metrics can be found in Section 7.6.
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Environment Navigation mesh Performance

Construction time (ms) Memory usage (MB)
Average SD Average SD

ParkingLot ECM 7.16 1.53 31.45 0.20
CDG 6,686.30 18.02 53.33 0.01
Recast 31.60 0.66 3.53 0.00
NEOGEN 53.00 0.00 63.07 0.01
Grid 88.84 3.13 49.18 0.29

Library ECM 13.07 2.27 33.48 0.38
CDG 11,374.29 31.39 59.02 0.01
Recast 62.41 0.80 4.72 0.00
NEOGEN 56.10 4.35 71.39 0.05
Grid 211.99 22.58 54.12 0.29

Oilrig ECM 55.67 10.68 38.52 0.76
CDG 45,585.04 61.95 100.93 0.01
Recast 2,280.03 6.43 49.79 0.23
NEOGEN 219.80 6.18 107.94 0.49
Grid 2,827.53 51.75 707.46 10.02

Neogen1 ECM 158.49 25.01 45.62 0.00
CDG 19,911.95 24.38 101.37 0.03
Recast 281.58 0.92 8.89 0.00
NEOGEN 1,924.90 18.25 195.75 0.02
Grid 1,498.18 43.75 192.09 0.12

Neogen2 ECM 43.40 6.22 37.58 0.46
CDG 32,356.20 50.54 95.81 0.01
Recast 208.62 1.28 8.58 0.00
NEOGEN 245.60 4.20 93.33 0.45
Grid 498.23 23.05 80.71 6.43

Neogen3 ECM 24.52 2.67 36.07 0.34
CDG 32,919.54 80.55 82.33 0.01
Recast 213.52 1.63 8.40 0.00
NEOGEN 100.90 3.42 76.77 0.50
Grid 523.35 54.51 109.36 1.40

Tower ECM 139.45 17.94 72.63 0.58
CDG 51,898.69 129.44 169.52 0.03
Recast 538.25 3.79 16.22 0.05
NEOGEN - - - -
Grid 3,699.97 60.07 192.12 1.08

BigCity ECM 756.03 5.45 299.44 0.90
CDG - - - -
Recast 16,353.00 28.15 216.66 0.20
NEOGEN - - - -
Grid - - - -

Table 7.10: Results for the performance metrics in the multi-layered environments. An
empty row indicates that the navigation mesh could not be computed for the corresponding
algorithm and environment.
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8 Dynamic Re-planning

In this chapter, we consider path planning and crowd simulation in dynamic
environments. We present algorithms for efficient re-planning of optimal or sub-
optimal paths in dynamic navigation meshes.

This chapter is based on the following publication:

• W. van Toll and R. Geraerts. Dynamically Pruned A* for re-planning in navi-
gation meshes. In Proceedings of the 28th IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2051–2057, 2015. [149]

8.1 Introduction

Chapter 2 has explained how a character typically uses the A* algorithm to compute
an optimal global path through the dual graph of a navigation mesh. This path
can then be converted into an indicative route, which the character traverses while
locally avoiding other characters.

In dynamic environments, obstacles can appear or disappear at run-time, which
may have a large impact on the environment. For example, imagine a bridge
collapsing or an explosion opening up a new route. When such a dynamic event
occurs, local collision avoidance is not sufficient; instead, the navigation mesh
should be updated. Chapter 6 has shown how these dynamic updates can be
performed in the ECM.

In response to a dynamic event, characters should re-plan their global paths in
the newly updated navigation mesh. Efficient re-planning algorithms already exist
for graphs with dynamic costs and for high-dimensional motion planning problems.
However, many of these algorithms require too much memory for crowds (because
characters need to remember parts of the previous search), or they are difficult to
implement for graphs in which vertices and edges are added or removed.

This chapter presents Optimal Dynamically Pruned A* (ODPA*), an extension of
A* that efficiently re-plans an optimal global path in a navigation mesh when an
obstacle has been inserted or removed. Conceptually, ODPA* has similarities to
so-called adaptive search algorithms that make the A* heuristic more informed
based on previous queries. However, ODPA* prunes the A* search using only
the previous path and its relation to the dynamic event. Characters do not need
to remember additional information from the previous search. Our algorithm is
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memory-friendly and robust against structural changes in the graph, which makes
it suitable for crowds in dynamic navigation meshes. Because ODPA* is a graph
search algorithm, it can be applied to any type of navigation mesh and all types of
non-negative edge costs.

Experiments show that ODPA* performs particularly well in complex envi-
ronments and when the dynamic event is visible to the character. We integrate
the algorithm into crowd simulation software to model large crowds in dynamic
environments in real-time.

ODPA* is an adaptation of Dynamically Pruned A* (DPA*), which has been
presented in one of our publications [149]. DPA* assumed that an inserted obstacle
could only lead to increased costs in the graph, and that a deleted obstacle could
only lead to decreased costs. We have discovered that this assumption does not
always hold; therefore, DPA* does not always compute optimal paths. This issue
has been resolved in ODPA*.

The remainder of this chapter is structured as follows:

• Section 8.2 reviews related work on dynamic environments and re-planning.

• Section 8.3 describes the re-planning problem in an abstract way.

• In Section 8.4, we give a description and pseudocode of the ODPA* algorithm
for re-planning optimal paths.

• As a side note, Section 8.5 describes a different re-planning technique that
computes a suboptimal path by re-using more of the previous path.

• Section 8.6 analyzes the performance of ODPA* compared to standard A*,
and it shows how the algorithms can be used in real-time crowd simulations.

• Section 8.7 concludes the chapter and provides directions for future work.

8.2 Related Work

We refer the reader to Chapter 2 for an overview of related work on navigation
meshes and crowd simulation in static environments. Also, because the algorithms
presented in this chapter are extensions of the A* search algorithm, it is useful to
revisit Section 3.2, which describes A* globally.

In Section 6.2, we have discussed a number of possible representations of
dynamic environments. For this chapter, we will focus on navigation meshes that
can be updated dynamically [41, 67, 154].

8.2.1 Re-planning Algorithms

To efficiently re-plan optimal paths after a dynamic event, incremental variants
of A* deal with changing costs by remembering information from the previous
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query. Algorithms such as D* Lite and Fringe-Saving A* remember the g and h

values of each graph vertex and update the values that change due to the event
[2, 85, 86, 144]. These are related to anytime algorithms that iteratively improve
a sub-optimal path [8, 71, 97].

However, remembering the A* search space of each character is not feasible for
large crowds. Also, re-planning in a dynamic navigation mesh is more complex
than in a graph in which the costs change but the structure does not. A dynamic
event may cause parts of the navigation mesh to (dis)appear, which also affects
the underlying graph that is used for path planning. We cannot simply apply
different costs to graph edges that already existed. Handling these effects in a
memory-based algorithm is possible in theory, but difficult and costly in practice.
For these reasons, ODPA* does not require memory of the previous search other
than the path itself.

Another approach is to use experience graphs [122], in which only an abstract
higher-level graph is remembered. This is particularly useful for high-dimensional
motion planning problems; it is less applicable to our problem, since navigation
meshes are already compact.

8.2.2 Comparison to Adaptive A*

The Adaptive A* algorithm and its successors are closest to our work: they use
information from the previous query to make the h values more informed in such
a way that h remains consistent [50, 51, 52, 145]. Under certain conditions, the
algorithms can immediately stop when a vertex of the old path is expanded. These
algorithms require less memory of the previous search than e.g. D* Lite, and they
are more suitable for dynamic navigation meshes.

By contrast, in this chapter, we do not make h more informed; instead, we
use the estimated ‘distance’ to the dynamic event to find out if vertices can be
skipped. Hence, we prune the A* search without changing any costs or heuristics.
Our algorithms do not terminate until the goal vertex is expanded, which might be
seen as a disadvantage compared to adaptive A*. However, in exchange, we use
even less memory: characters only need to remember their paths, and not the way
in which these paths have been computed.

In short, ODPA* investigates how parts of the A* search can be skipped after a
dynamic event, without requiring extra memory between or during queries. Con-
ceptually, the method lies between regular A* and adaptive re-planning algorithms.
ODPA* is effective for real-time crowd simulation in dynamic environments.

8.3 Problem Description

8.3.1 Navigation Mesh and Graph

In this chapter, we assume that the characters use a graph for global planning.
For navigation meshes, this is typically the dual graph of the walkable regions, as
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explained in Chapters 2 and 3. An exception is the Explicit Corridor Map (ECM)
from Chapters 4 and 5, in which the path planning graph is the medial axis.

We also ensure that characters always plan paths between two vertices of the
graph. This can be achieved by connecting the start and goal positions to nearby
vertices. In the case of the ECM, we can use the retraction operation from Chapter 4
that maps points in the free space to points on the medial axis.

It is important to see that we focus only on global path planning in the graph.
The output of our ODPA* algorithm is a sequence of graph vertices to which we will
simply refer as a path. In a crowd simulation, this path needs to be converted to an
appropriate indicative route that the character can follow in real-time. Throughout
this chapter, we will not concern ourselves with the computation of indicative
routes, up to Section 8.6.2 in which we integrate ODPA* into crowd simulations.

8.3.2 Dynamic Events

In a dynamic environment, obstacles can be inserted, deleted, or moved during
the simulation. Just like in Chapter 6, we focus on insertions and deletions. Moving
obstacles can be represented by sequential deletions and insertions, or by locally
avoidable entities until they become stationary. Such a dynamic event leads to an
update of the navigation mesh: regions can be added, removed, split, or merged.
Consequently, the structure of the dual graph also changes. As mentioned, this
means that we cannot easily use re-planning algorithms designed for graphs in
which only the costs are dynamic and the topology is static.

When an obstacle is inserted or removed, it affects only a certain part of the
navigation mesh. Let the affected region R be the part of the graph that has
changed, i.e. the set of vertices and edges that have appeared, disappeared, or
changed. ODPA* will treatR as an area in which the costs have changed, regardless
of what this area looked like before the event. Note that R is computed during the
mesh update; we do not need to find it afterwards. Also, R can have any shape; it
may even consist of multiple disconnected regions.

8.3.3 Re-planning Scenarios

Let S and G be the start and goal vertex of a character, as in Figure 8.1. Initially,
the character uses A* to find an optimal path in the graph, which we call [SG]−.
The superscript − refers to old paths, computed before a dynamic event. Assume
that an event occurs later in the simulation, and the character decides to re-plan
when it has traversed the path up to a vertex T , e.g. because it can now see the
event. The character should re-evaluate its path from T to G, i.e. [TG]−. We
assume that the affected region R (the set of vertices and edges with updated
costs) was already computed during the mesh update.

Our goal is to compute a new optimal path [TG]+. The superscript + refers to
new paths, i.e. paths computed after the dynamic event. The most straightforward
way to compute [TG]+ is to perform A* ‘from scratch’, i.e. to compute a new path
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from T to G without re-using any information. However, ODPA* will improve the
search by re-using information from [TG]−.

There are two possible re-planning scenarios: [TG]− either does or does not run
through R. If [TG]− does not run through R (Figure 8.1a), we say that the old
path is unaffected: [TG]− is still valid, but it may not be optimal anymore.

If [TG]− does run through R (Figure 8.1b), we say that the old path is affected.
In this case, [TG]− can enter and exitRmultiple times becauseR can be arbitrarily
shaped. Let A and B be the first and last vertex in R that occur in [TG]−. We
split the path into three sections: two valid subsections [TA]− and [BG]−, and one
invalid subsection [AB]−.

In some cases, the valid subsections [TA]− and [BG]− can be empty. If [TA]−

is empty, then the graph has changed in the character’s vicinity, and the character
will need to perform a new point-location query in the navigation mesh. If [BG]−

is empty, then the graph has changed near the goal, and we need a new point-
location query to map the goal position to a new goal vertex. For simplicity, we will
still use T and G to denote the new start and goal vertex, respectively.

S

G

T

R

[TG]−

(a) Unaffected path

S

G
A

B

[TA]− [BG]−

T

R

(b) Affected path

Figure 8.1: Re-planning scenarios after a dynamic event. A character is following a path
from S to G and decides to re-plan at a vertex T . The inserted or deleted obstacle is shown
as a gray rectangle, surrounded by the affected graph region R. (a) If the old path [TG]−

does not run through R, then it is still valid, but possibly not optimal. (b) Otherwise, we
define A and B as the first and last path vertex intersecting R. The subpaths [TA]− and
[BG]− are still valid and could be re-used in a re-planning algorithm.

In general, a new optimal path may enter and exit R multiple times; we cannot
know in advance when this will happen. However, we do know that R is the only
region in which the graph and its costs have changed.

8.4 Optimal Dynamically Pruned A*

We now present Optimal Dynamically Pruned A* (ODPA*), an algorithm that adds
pruning rules to standard A* search based on information from the old path. In
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contrast to many other re-planning algorithms, we do not require extra memory of
the search space throughout the simulation.

We have deliberately designed ODPA* in an abstract way such that it can be
applied to all graphs with non-negative edge costs, including the dual graphs of
navigation meshes. When using an admissible heuristic, ODPA* computes optimal
paths. If the heuristic is not admissible, ODPA* may compute sub-optimal paths
just like standard A*. However, inadmissible heuristics are only used when paths
are allowed to be sub-optimal. In such cases, it may be preferable to use even
faster algorithms that do not guarantee optimality; we will discuss this briefly in
Section 8.5.

8.4.1 Scenario 1: Old Path Unaffected

We first consider the case in which [TG]− does not run through R. Recall from
Section 8.3.3 that the old path [TG]− is still entirely valid in this scenario. Because
the graph costs have not changed outside of R, [TG]− is still an optimal path from
T to G among all possible paths that do not involve R. More generally, for each
vertex V on [TG]−, the path [V G]− is still optimal among all paths that do not
visit R. Consequently, if a better path than [TG]− has appeared, then such a path
must pass through R at least once. ODPA* therefore recognizes vertices for which
a better path via R cannot exist.

For any vertex V in the graph, let c∗(V,R) be the (currently unknown) optimal
path cost from V to any vertex in R. Let h′(V,R) be a heuristic that does not
overestimate this cost. For example, when using distance-based costs, h′(V,R)

could be the Euclidean distance from V to a bounding polygon of R. Note that
h′(V,R) = 0 if V ∈ R.

When expanding a vertex V , the costs for reaching the goal from V via R
will be at least h′(V,R) + h′(G,R). Just like in standard A* (Section 3.2), let
g(V ) be the new path cost to V that has been found during the current search.
The cost of any path from T to G that (re-)visits R after V will be at least
g(V ) + h′(V,R) + h′(G,R). If this value is greater than or equal to the cost of the
old path [TG]−, then there is no point in visiting R from V , and we say that V is
R-worse. (Intuitively, if distance-based costs are used, we could say that R is ‘too
far away’ to be used in combination with V .)

When it has been determined that visitingR from V is not useful, the same will
hold for all subsequent vertices that the search will reach from V . In other words,
all vertices explored from an R-worse vertex will also be R-worse themselves.

When ODPA* arrives at a vertex V that is R-worse, there are two cases in which
the search can be pruned:

• If V ∈ [TG]−, then the old subpath [V G]− is still the optimal path from V

to G. After all, any paths via R are too costly because V is R-worse, and a
path that does not visit R cannot be better than [V G]− (otherwise it would
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have been found in the previous search). Thus, the best option from V is to
follow the old path. Let V ′ be the successor of V in [V G]−. ODPA* adds only
V ′ to the open list; it can safely ignore all other neighboring vertices of V .
(See Figure 8.2a.)

Note that the search does not terminate yet at this point. We only know the
optimal path via V , which may not be the overall optimal path. There could
still be better paths that meet [TG]− at a different vertex. Thus, the search
continues, but we ignore all paths via V that will definitely not be better.
(Some variants of Adaptive A* [52] do halt the search here, but this is only
possible because they use more memory-intensive heuristics.)

• If V /∈ [TG]− and [TV ]+ has not passed through R yet, then there is no
better path via V at all. After all, R must be visited at least once to improve
upon [TG]−, but we have now established that V is R-worse: we cannot
reach R from V and still obtain a better path. Hence, ODPA* does not
expand V any further. (See Figure 8.2b.)

T

R h′(G,R) G

V

h′(V,R)

[TV ]+

(a) Vertex on the old path

R h′(G,R) G

h′(V,R)

[TV ]+ VT

(b) Vertex not on the old path

Figure 8.2: Pruning rules of ODPA*. The algorithm has arrived at a vertex V that is
R-worse. That is, a better path from V via R cannot exist, based on the heuristic function
h′ (indicated in blue). (a) If V ∈ [TG]−, then the best path to the goal is still [V G]−.
ODPA* adds only V ’s successor (black circle) to the open list. (b) If V /∈ [TG]− and the
new path [TV ]+ has not visited R yet, then there is no need to expand V .

This way, the open list contains only the vertices of [TG]−, plus the vertices for
which a better path through R might still exist. As such, ODPA* is still guaranteed
to find an optimal path to G, either via the old path or via R.

Algorithm 8.1 gives the pseudocode of ODPA* for this scenario. For clarity, all lines
that also occur in standard A* (given in Algorithm 3.1) are shown in gray, and the
extra lines for ODPA* are shown in black. To improve efficiency, we have added
case distinction when checking which edges of V to explore (i.e. all neighbors,
only its successor, or none). This postpones the check for R-worseness until it can
actually lead to pruning.
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Our pseudocode also includes a closed list of previously expanded vertices to
speed up the algorithm. Just like in standard A*, pruning the search based on the
closed list is only safe when the heuristic function is consistent.

8.4.2 Scenario 2: Old Path Affected

If the old path [TG]− does pass through R, the situation is more complex. In
general, it is unknown if and where a new optimal path will visit R, and it
is unknown whether such a path will have a higher or lower cost than [TG]−.
However, we can use a weaker version of the algorithm for Scenario 1.

The information in [BG]−, the valid subpart of [TG]− after R, can be re-used
almost as in Scenario 1. Assume that [BG]− is not empty. For each V ∈ [BG]−,
the old path [V G]− is still the optimal path from V to G among all paths that do
not use R. The only way to possibly improve upon [V G]− is to visit R at least
once. Thus, whenever h′(V,R) + h′(G,R) ≥ cost([V G]−), we know that visiting
R from V cannot lead to improvements, and it suffices to add only the successor
of V in [TG]− to the open list.

For vertices that do not lie on [BG]−, we cannot do this because we do not
have an upper bound of the new optimal path cost to G. Even for vertices on
the other valid subsection [TA]−, the new optimal path to G may have a higher
cost than the old path. Thus, [BG]− is the only subsection that ODPA* re-uses. If
[BG]− is empty because the graph has changed near the goal, then ODPA* reduces
to standard A*.

The pseudocode of ODPA* for this scenario is given in Algorithm 8.2. To facilitate
the algorithm, we precompute cost([V G]−) for each V ∈ [BG]−. This can be per-
formed in constant time per vertex by starting at G and tracing [BG]− backwards.
Note that this was not necessary in Scenario 1 because we could use cost([TG]−)

to classify all vertices.

8.5 Local Re-planning

Instead of looking for a new optimal path, a character may choose to repair its
path only locally and re-use more of its previous path. There are many ways to
define such a local re-planning strategy. In this section, we choose one version and
we formalize it using the same terminology as before. We will not use it in our
experiments; instead, this section can be seen as a side note for readers interested
in implementing various re-planning strategies.

Again, let [TG]− be the old path when the character decides to re-plan.

• If [TG]− does not run through the affected region R, then this path is still
valid and the character keeps it.

• If [TG]− does run through R, then the character plans a detour around the
affected region. Specifically, it computes a new subpath [AB]+ from A to B
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Algorithm 8.1: ODPA*-PATHUNAFFECTED(T,G, [TG]−,R)
1: g(T )← 0, T.parent← NULL

2: T.visitedR← false, T.rworse← false
3: OPEN← {T}, CLOSED← ∅
4: while OPEN 6= ∅
5: V ← argminV ′∈OPEN{g(V ′) + h(V ′)}
6: Remove V from OPEN
7: Add V to CLOSED
8: if V = G

9: return the path from T to G via parent pointers
{Determine how to expand V }

10: V.visitedR← V.parent.visitedR or V ∈ R
11: V.rworse← V.parent.rworse
12: if V /∈ [TG]− and V.visitedR
13: checkAll← true
14: else
15: V.rworse← V.rworse or g(V ) + h′(V,R) + h′(G,R) > cost([TG]−)

16: if not V.rworse
17: checkAll← true
18: else if V ∈ [TG]−

19: checkAll← false
20: else
21: continue
22: for each edge (V,W )

23: if W ∈ CLOSED
24: continue
25: if not checkAll and W 6= succ(V, [TG]−)

26: continue
27: if g(V ) + c(V,W ) < g(W )

28: g(W )← g(V ) + c(V,W )

29: W.parent← V

30: Insert or update W in OPEN

31: return NULL
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Algorithm 8.2: ODPA*-PATHAFFECTED(T,G, [TG]−,R)
1: g(T )← 0, T.parent← NULL

2: T.rworse← false
3: for each V ∈ [BG]−, starting at G
4: Precompute cost([V G]−)

5: OPEN← {T}, CLOSED← ∅
6: while OPEN 6= ∅
7: V ← argminV ′∈OPEN{g(V ′) + h(V ′)}
8: Remove V from OPEN
9: Add V to CLOSED

10: if V = G

11: return the path from T to G via parent pointers
{Determine how to expand V }

12: V.rworse← V.parent.rworse
13: if V /∈ [BG]−

14: checkAll← true
15: else
16: V.rworse← V.rworse or h′(V,R) + h′(G,R) > cost([V G]−)

17: if not V.rworse
18: checkAll← true
19: else
20: checkAll← false
21: for each edge (V,W )

22: if W ∈ CLOSED
23: continue
24: if not checkAll and W 6= succ(V, [BG]−)

25: continue
26: if g(V ) + c(V,W ) < g(W )

27: g(W )← g(V ) + c(V,W )

28: W.parent← V

29: Insert or update W in OPEN

30: return NULL
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using regular A*. Figure 8.3 shows that [AB]+ may partly overlap with the
old subpaths [TA]− and [BG]−. To keep the character from visiting a vertex
more than once along its path, we resolve this overlap. Let A′ be the first
vertex along [TA]− that occurs in [AB]+, and let B′ be the last vertex along
[BG]− that occurs in [AB]+. We define the final path as the concatenation
of [TA′]−, [A′B′]+, and [B′G]−.

GA B
R

T A′ B′

Figure 8.3: Local re-planning of an affected path. We first plan a new subpath [AB]+

(dotted). To resolve overlap with [TG]−, we locate the vertices A′ and B′ (shown as circles)
where this overlap starts and ends. We use the concatenation of [TA′]−, [A′B′]+, and
[B′G]− as our new result.

Naturally, local re-planning is usually very efficient because the path is only partly
updated. However, the new path is not necessarily optimal. The difference to
the optimal path grows in particular when many detours are planned in a row.
On the other hand, this behavior might actually be desirable in some situations;
hence, this local re-planning strategy can be used deliberately to obtain different
character behavior.

8.6 Experiments and Results

We have implemented ODPA* for the dynamic Explicit Corridor Map (ECM) navi-
gation mesh from Chapters 4 and 6.

We define the cost of an ECM edge e as the 2D curve length of e, and we use
the 2D Euclidean distance to the goal as the heuristic function h. For dynamic
deletions, we estimate the cost to R (i.e. the second heuristic h′) by the distance to
the axis-aligned bounding box of all affected vertices. This approximation allows
us to compute h′ values in constant time. We include a closed list in both ODPA*
and regular A*, which is safe because h is consistent.

8.6.1 ODPA* versus A*

We compared the running times of ODPA* and A* in the environments shown
in Figures 8.4 and 8.5. Details of the environments and their ECM navigation
meshes can be found in Table 8.1. In each environment, we defined a number of
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(a) Military (b) City (c) Zelda

Figure 8.4: The first three environments used in our experiment. Static geometry is shown
in gray; dynamic obstacles are shown in black.

dynamic obstacles (squares of 2× 2 m). For each such obstacle O, we performed
the following steps:

1. Create 500 pairs of random positions (s, g) that do not intersect the environ-
ment or O.

2. For each position pair (s, g), compute a shortest path from s to g on the
medial axis using the retraction method described in Section 4.3.3, and using
a character radius of 0.7 m (a size that fits through all passages). Convert
this ECM path to a short indicative route (IR) with a preferred clearance of
0.5 m (on top of the character’s radius), as described in Section 4.3.4. This is
the route that the character would follow in a crowd simulation.

3. Insert O into the ECM dynamically. For each position pair, recompute the
path in the ECM using both ODPA* and A*. Convert the new ECM path to
an IR again; this route is recomputed from scratch.

4. Delete O dynamically. For each position pair, recompute the path using
ODPA* and recompute the IR. (We can skip regular A*: it would give the
same result as in Step 2.)

We always performed all steps for one obstacle before moving on to the next
obstacle; hence, the environments contained at most one dynamic obstacle at a
time. The average running time of all dynamic insertions in all environments was
0.34 ms (σ=0.16); the average time for deletions was 1.79 ms (σ=0.89).

Table 8.2 summarizes the performance of ODPA* compared to A* for both
re-planning scenarios. We computed the relative improvement as (A−D)/A · 100%,
where A is the sum of all A* times and D is the sum of all ODPA* times, over all
trials that fit in one scenario. This is a good indication of the time that can be
gained by using ODPA* instead of A* on a crowd with random characters.

For completeness, we have measured two variants of the relative improvement.
The first variant (labelled as ‘Path only’ in Table 8.2) is based only on the running
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(a) Zelda2x2 (b) Zelda4x4

(c) Zelda8x8

Figure 8.5: The last three environments used in our experiment. Static geometry is shown
in gray; dynamic obstacles are shown in black.
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Environment Size (m) ECM vertices ECM edges Dynamic obstacles

Military 200x200 56 70 17
Zelda 100x100 288 343 24
City 500x500 1451 1631 70
Zelda2x2 200x200 1144 1368 106
Zelda4x4 400x400 4560 5464 235
Zelda8x8 800x800 18304 21936 470

Table 8.1: Details of the experimental environments. The third and fourth columns show
the complexity of the ECM graph without dynamic obstacles. These numbers are slightly
different from Chapter 4 because a different version of our software was used, with a slightly
different treatment of e.g. degree-4 ECM vertices and nearly-collinear obstacle vertices.
The fifth column shows the number of dynamic obstacles (the black squares in Figures 8.4
and 8.5).

time for ODPA* and A* itself, i.e. the time spent on recomputing the path in the
ECM. This is the most pure comparison between ODPA* and A*. The second
(labelled as ‘Path + IR’ in Table 8.2) includes both the path planning time and the
time to (re)compute the indicative route. This is the most realistic comparison
for crowd simulation purposes. Because indicative routes are always recomputed
from scratch, the improvement for ‘Path + IR’ is generally slightly lower than the
improvement for ‘Path only’. We will only discuss the results for ‘Path + IR’ in the
remainder of this section.

Results. ODPA* performs fewer operations on the A* open list in exchange for
overhead, e.g. for finding the affected part of a path, and for estimating the
distance to R. In the Military environment, the ECM graph was too small for this
to be beneficial, and regular A* was faster overall.

In the ‘path unaffected’ scenario, the relative improvement was positive in
all other environments, and it increased along with the complexity of the graph,
up to an improvement of 40% in Zelda4x4. This is logical because the dynamic
event in our experiment had a relatively small effect on larger graphs, which
allowed larger fractions of paths to be re-used. Hence, ODPA* appears to be
good at checking whether an unaffected path in a large graph is still optimal. In
preliminary experiments, we also observed that the algorithm is particularly fast
when the dynamic obstacle is farther away from the path.

In the ‘path affected’ scenario, the improvements were small, up to 6% in
Zelda4x4. However, as shown in the rightmost column of Table 8.2, this scenario
occurred considerably less often than the ‘path unaffected’ scenario. Especially in
complex graphs, the chance of a random path being affected by a local dynamic
event is small.

While we expected to obtain the best improvement rates in the most complex
environment, the results for Zelda4x4 turned out better than those for Zelda8x8.
A possible explanation for this is that the repetition of the Zelda environment in
a grid pattern leads to many possible paths of comparable length, which may
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Relative improvement

Path unaffected Path affected % Affected

Environment Path only Path + IR Path only Path + IR

Military -16.85% -18.18% -13.97% -15.08% 11.76%
Zelda 13.16% 11.15% -6.90% -8.07% 8.59%
City 23.42% 22.85% 0.90% 0.57% 6.12%
Zelda2x2 28.59% 27.77% 2.46% 2.05% 4.53%
Zelda4x4 40.54% 40.24% 6.30% 6.09% 2.03%
Zelda8x8 38.42% 38.56% 2.15% 2.32% 1.01%

Table 8.2: Results of the first experiment. All percentages denote the relative improvement
of ODPA* over A*, computed as described in Section 8.6.1. A negative percentage (gray)
means that A* was faster combined over all trials; a positive percentage (black) means that
ODPA* was faster. The two percentages in bold blue are analyzed further in Figures 8.6a
and 8.6b. The last column shows the percentage of all trials that corresponded to the ‘path
affected’ scenario.

make the search slower and lead to less pruning. In future work, we would like to
experiment with other large environments that have a different structure.

Visibility. We repeated this experiment with the extra constraint that all start posi-
tions lie in the visibility polygon [35] of the dynamic obstacle’s center of mass. This
simulates the effect that characters re-plan when they see the event. We computed
visibility polygons using an algorithm based on the adjacency between ECM cells.
Chapter 4 provides more details about this algorithm and its performance.

The results for this variant are shown in Table 8.3. As shown in the rightmost
column, more paths were affected this time (up to 46% in Zelda). This was to be
expected: if a character can see a dynamic event, it is more likely that this event
affect the character’s path. Fewer paths were affected in Military and City because
these environments have more large open spaces: there, dynamic obstacles are
more easily visible without necessarily being on the character’s path.

In the ‘path unaffected’ scenario, we obtained a lower improvement than before
because there was less room for pruning this time: if a dynamic event is visible, it
is most likely nearby and ODPA* can less quickly qualify it as being ‘too far away’.
Still, the results were positive in all environments except Military, and we obtained
an improvement of 28% in Zelda4x4.

In the ‘path affected’ scenario, which now occurred more often, the results
strongly improved with respect to the first experiment. For instance, we obtained
a relative improvement of 23% in Zelda4x4. In this scenario, if an event is visible
from the starting point, then the event is more likely to be located at the beginning
of the route than at the end. Thus, the valid subsection [BG]− is relatively long,
which facilitates pruning. Overall, this experiment suggests that ODPA* can be used
for efficient visiblity-based replanning in complex environments where dynamic
events have a relatively small influence.
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Relative improvement (Source in visibility polygon)

Path unaffected Path affected % Affected

Environment Path only Path + IR Path only Path + IR

Military -17.38% -19.00% -18.88% -20.77% 27.40%
Zelda 4.79% 2.98% -5.27% -7.12% 46.46%
City 15.84% 15.27% 6.44% 5.76% 31.61%
Zelda2x2 16.47% 15.81% 10.14% 9.25% 45.44%
Zelda4x4 28.43% 28.15% 23.18% 22.83% 45.84%
Zelda8x8 16.09% 16.26% 13.10% 13.17% 45.65%

Table 8.3: Results of the second experiment, in which the source point was always inside the
visibility polygon of the dynamic obstacle. The two percentages in bold blue are analyzed
further in Figures 8.6c and 8.6d.

Close-up. Figure 8.6 shows the results for the Zelda4x4 environment in more
detail: it compares the average running times of A* and ODPA* for each distinct
number of vertices on the re-planned paths.

For paths of only a few vertices, both algorithms are fast and there is no
clear difference between ODPA* and A*. As the paths become more complex and
planning takes more time, the improvement of ODPA* becomes more evident, up
to a certain point where the difference to A* starts decreasing again. A possible
explanation for the latter effect is that long paths typically run between opposite
corners of the environment. In such cases, it takes longer until vertices can be
marked as R-worse. Also, note that only a small fraction of all paths consisted of
100 or more vertices; therefore, the average running times vary more in this range.

We conclude that ODPA* is useful for checking if a path is still optimal after an
event has occurred far away, and for updating an affected path as soon as the
dynamic event is visible to the character. The improvement upon A* is generally
better in larger graphs. In such environments, memory-based algorithms like D*
Lite [85] and Adaptive A* [145] are likely to be too expensive for large crowds.
The supplementary video of our original publication [149] shows visual examples
of visibility-based re-planning compared to instantaneous re-planning.

8.6.2 Crowd Simulation

Finally, we have integrated ODPA* in our ECM-based crowd simulation software
that will be described further in Chapter 10. More details on the architecture and
performance of this program will be provided in Chapter 10; for now, it is sufficient
to know that the software can simulate large crowds in real-time, and that ODPA*
can be plugged into the framework.

Obstacles can be added and removed interactively; members of the crowd
can use ODPA* to compute a new path through the ECM, which can then be
converted to an indicative route. When using visibility as a trigger, re-planning
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(a) Unaffected paths, no visibility
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(b) Affected paths, no visibility
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(c) Unaffected paths, visibility
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(d) Affected paths, visibility

Figure 8.6: Detailed results of the re-planning experiment in Zelda4x4. The horizontal axis
denotes the length (the number of vertices) of the re-planned path. The left vertical axis
denotes the average running time of A* or ODPA* for each distinct path length. The gray
histogram and the right vertical axis show how often each path length occurred. These
figures correspond to the relative improvements of 40.24%, 6.09%, 28.15%, and 22.83% in
Tables 8.2 and 8.3.

actions are automatically divided over time, allowing real-time performance. This
performance may drop when an event happens to affect many characters at the
same time. A solution could be to allow only a maximum number of re-planning
actions per simulation step; the remaining characters would then respond slightly
later in the simulation. Another idea would be to perform re-planning in a parallel
thread while the simulation keeps running.

We will now show two examples of ODPA* being used in crowd simulations.
Figure 8.7a demonstrates how visibility-based re-planning allows us to model
different types of behavior. In this example, characters enter the environment on
the left side and plan a shortest path to the right side. During the simulation, a
dynamic obstacle is added in the middle. From that moment on, red characters
know about this obstacle in advance and take the left route. Blue characters are
small enough to take the middle route, thanks to the ECM’s clearance information.
Green characters do not know about the dynamic obstacle until they see it; by then,
they re-plan and discover that the right route has become the shortest.

In Figure 8.7b, a crowd moves through the Military environment while obstacles
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are dynamically inserted and deleted. We invite the reader to watch the original
paper’s supplementary video [149] for more (animated) examples.

(a) Types of behavior (b) Crowd in Military

Figure 8.7: Crowd simulations using ODPA*. (a) An example with three routes and a
dynamic obstacle in the middle. The characters take different routes based on their own
(re-)planning properties. (b) A crowd of 1,000 characters moving through the Military
environment. Dynamic obstacles can be added and removed during the simulation.

8.7 Conclusions and Future Work

In simulations and games, a dynamic navigation mesh represents an environment
in which obstacles are inserted or deleted at runtime. After a dynamic event,
characters in a virtual crowd should re-plan their paths. One way to re-plan a
path after a dynamic event is to perform A* search from scratch, but it is intuitive
to re-use information from the old path. Many existing re-planning algorithms
are efficient in other applications, but they are not designed for large crowds or
structural changes in the search space.

In this chapter, we have presented Optimal Dynamically Pruned A* (ODPA*),
which re-plans a path by adding pruning rules to A*, using only the old path and
its relation to the dynamic event. The algorithm is defined for arbitrary graphs
and costs, and it yields optimal paths when using admissible heuristics. Its focus is
different to that of other re-planning algorithms: ODPA* is primarily meant as an
improvement of A* for applications that have limited memory per character, such
as simulations of large crowds.

Experiments show that A* is faster in small graphs, but that ODPA* can decrease
the re-planning time in complex environments. Our algorithm is particularly
efficient when there is more room for pruning, e.g. when the dynamic event
is far away from an unaffected path or when the path is affected only at the
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beginning. The latter situation is likely to occur when the dynamic event is within
the character’s visibility range. In conclusion, ODPA* is an intuitive extension of
A* that can improve real-time crowd simulation in large dynamic environments.

Discussion and future work. The environments in our experiments were chosen
to represent a range of graph complexities. However, the Zelda variants are all
structurally similar, and the grid-based repetition pattern of Zelda8x8 appeared
to affect the results. To draw more general conclusions about the performance
of ODPA*, we would like to test other large environments that are structured
differently, such as maps of real-world cities.

It would be interesting to extend ODPA* to handle multiple dynamic events
in a single re-planning query. One possible approach is to combine the affected
regions from each event into a single region R. However, our algorithm will be
less efficient if R is large or if it consists of sub-regions scattered throughout the
environment. In many cases, it may be better to perform a separate re-planning
query per event.

It is also likely that ODPA* can be further specialized and improved for navi-
gation meshes, e.g. by exploiting the facts that the graph is planar and costs are
distance-based. However, for this chapter, we have chosen to develop a general
algorithm that does not depend on these details.

Computing an optimal path may not be necessary in all applications. It would
therefore be interesting to compare ODPA* to algorithms that are known to yield
suboptimal paths in exchange for faster performance. Examples include our original
DPA* algorithm [149] and the local re-planning strategy from Section 8.5. Such a
comparison should consider running times as well as the length of the resulting
paths and indicative routes.

We would like to simulate incomplete knowledge in the crowd by giving each
character its own set of known and unknown events. Currently, characters know
about all events when re-planning because they always use the most recent version
of the mesh. However, implementing this incomplete knowledge efficiently will
be challenging. Keeping multiple versions of the navigation mesh in memory will
become infeasible at some point, as the number of versions will grow exponentially
with the number of dynamic events. Instead, it seems better to compute the
required version of the navigation mesh at the time of re-planning, but this will
obviously affect the performance of the simulation.

Furthermore, we want to explore how knowledge about events propagates
through the crowd. For instance, characters may recognize events via the behavior
of other characters.

Finally, we are interested in other types of dynamic geometry, e.g. moving
platforms that connect to different areas at different points in time. This asks for
new types of navigation meshes and path planning algorithms.
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9 Density-Based Crowd
Simulation

In this chapter, we use crowd density information to improve global path planning
for characters in a crowd, based on the observed relation between density and
walking speed. This leads to more efficient and natural-looking crowd flows.

This chapter is based on the following publication:

• W.G. van Toll, A.F. Cook IV, and R. Geraerts. Real-time density-based crowd
simulation. Computer Animation and Virtual Worlds, 23(1):59–69, 2012.
[155]

9.1 Introduction

Virtual characters often need to plan visually convincing paths through a crowded
environment. Such paths should be easy to compute and should permit characters
to avoid static obstacles as well as other moving characters. In many applications,
it is sufficient to let characters take the shortest path through the dual graph of a
navigation mesh, as outlined in Chapter 3. However, in crowded environments,
this may cause some areas to be used by many characters while other areas remain
largely unused. An example is shown in Figure 9.2a.

The real-world concept of crowd density is often expressed in persons per square
meter. Crowd density is an indicator of the safety of pedestrians in a crowd. High
densities are preferably avoided because they can lead to dangerous situations
and, in the worst case, many human casualties. Examples of crowded events with
disastrous outcomes include the 2010 Love Parade in Duisburg [47] and the 2015
Hajj pilgrimage in Mina1.

In this chapter, we use the concept of crowd density to improve global path
planning. Figure 9.1 shows the intuition behind our approach: density-based path
planning allows characters to prefer detours around congested areas, which avoids
more high-density scenarios and collision-avoidance problems than a simulation
without density information.

More specifically, our method keeps track of the current crowd density in each
region of a navigation mesh. Based on the real-world relation between crowd
density and typical walking speed [160], also known as a fundamental diagram
[130], we convert these density values to edge costs in the path planning graph.

1 See e.g. https://en.wikipedia.org/wiki/2015_Mina_stampede.

https://en.wikipedia.org/wiki/2015_Mina_stampede
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(a) Scenario (b) Short path (c) Density-aware path

Figure 9.1: Introduction to density-based path planning. (a) A blue character wants to
move to the top-left corner of an environment. The left half of the environment is occupied
by many other characters (shown in orange). (b) If the blue character follows the shortest
route to its goal, it is likely to get stuck in the congested region. (c) If we include density
information, the character can prefer a detour along which the crowd density is lower.

These costs can roughly be interpreted as the ‘estimated traversal time’ for an edge.
Characters perform an A* search on this weighted graph to plan a density-aware
path through the environment. Such a path can then be converted to an indicative
route for the character to follow in real-time, but (as in Chapter 8) we will not
focus on these aspects of the simulation.

Periodic re-planning allows characters to respond to changes in density. We
present an algorithm that lets characters re-plan their paths partially by ignoring
density information that is far away. When our algorithms are applied to a crowd,
the characters will spread among multiple routes, such as in Figure 9.2b. This
behavior emerges automatically based on the individual choices of each character.

Our concept of density-based crowd simulation can be applied to all navigation
meshes. This also means that it automatically applies to both 2D environments
and multi-layered environments. Throughout this chapter, we will use the Explicit
Corridor Map (ECM) from Chapters 4 and 5, but other navigation meshes can be
used as well. We choose the ECM because it provides a convenient mapping from
densities to edge costs, and because it allows us to plug the method into our crowd
simulation framework of Chapter 10.

Compared to our original publication [155], this chapter explains our method
in a more general way without focusing only on the ECM. Also, we explain the
method’s relation to fundamental diagrams, and we re-run experiments using our
updated crowd simulation software to obtain more relevant results.

The remainder of this chapter is structured as follows:

• Section 9.2 summarizes related work on crowd density, fundamental dia-
grams, and density-aware planning.

• Section 9.3 describes how we store and update the current crowd density in
each region of a navigation mesh.
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(a) Without density information (b) With density information

Figure 9.2: A crowd moving through a simple multi-layered environment. (a) Without
density information, most of the characters follow the same short path. This looks unnatural
and leads to a traffic jam. (b) When density information is considered, the characters will
naturally spread out among the available routes.

• Section 9.4 uses this information to compute more informed cost values in the
navigation graph, which induces a density-based path planning algorithm.

• Section 9.5 adapts this algorithm for re-planning paths over time.

• Section 9.6 shows that our algorithm can be used in real-time crowd simula-
tions, and it analyzes how the algorithm affects the behavior of a crowd.

• Finally, Section 9.7 concludes the chapter and highlights our method’s limi-
tations and options for future research.

9.2 Related Work

We refer the reader to Chapter 2 for an overview of related work on path planning
and crowd simulation. For this chapter, we will focus on previous research on
crowd density, which has not yet been covered in Chapter 2.

9.2.1 Crowd Density and Fundamental Diagrams

Crowd density is an important topic in the field of pedestrian dynamics, which
revolves around analyzing and simulating the behavior of pedestrians in real-world
scenarios. The crowd density in an area has an impact on the safety of pedestrians
in that area. As stated in Section 9.1, several crowd-related disasters in real life
can be attributed to a high crowd density.

Fruin [31] has proposed a system that uses ‘Levels of Service’ (LoS) to indicate
how safe or comfortable a certain crowd density value is. This system subdivides
the range of possible crowd density values into intervals that are labelled with a
letter (A to F) and a color, as summarized in Table 9.1. These labels are useful for
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analyzing when and where the crowd density reaches a critical value. However, the
density itself can be measured in a variety of ways, and the chosen measurement
method strongly influences the outcome of such an analysis [168].

In a widely cited technical report, Weidmann [160] has shown that a pedestrian’s
movements are influenced by environmental factors (e.g. weather conditions or
the incline of a surface) and personal factors (e.g. age or gender). The study
also revealed that the typical walking speed of a person decreases as the crowd
density around that person increases. These observations have influenced several
simulation models [22, 58].

The relation between crowd density and typical walking speed is often summa-
rized using a chart called a fundamental diagram. Fundamental diagrams were first
used in car traffic studies to capture the relations between driving speed, traffic
density, and flow (throughput) for roads [40]. In recent years, they have become
an increasingly popular concept for pedestrian dynamics as well [130]. Based
on real-world measurements, researchers have obtained fundamental diagrams
for pedestrian flows in small scenarios such as straight corridors [29, 89, 167].
Therefore, many different versions of the fundamental diagram exist; examples are
illustrated in Figure 9.3. The exact relation between crowd density and walking
speed appears to depend on many factors, including culture and the exact layout
of the environment. However, all versions of the fundamental diagram have in
common that the walking speed decreases as the density increases.

The fundamental diagram can also be computed for the behavior of simulated
crowds rather than real-world observations. Comparing the fundamental diagram
of a crowd simulation to its real-world counterpart indicates how well the simula-
tion corresponds to real behavior at a macroscopic level [11]. However, because
pedestrian flows are more complex and scenario-specific than standard traffic
flows, there are still many open research questions on how to use the fundamental
diagram properly for such purposes.

In this chapter, we will use the concepts behind the fundamental diagram to
influence the global path planning of individual characters. This will lead to a
more diverse crowd flow that often avoids high-density situations.

9.2.2 Density-Based Paths and Crowds

Karamouzas et al. [73] have presented a grid-based method for density-based
crowd simulation. They mark each cell in a grid as ‘dense’ when a character enters
it, and this density value decreases gradually over time. It is shown that path plan-
ning on this grid leads to natural variety among characters. However, as described
earlier, a grid is typically a less accurate and more expensive representation of the
environment than a navigation mesh. Furthermore, their technique is not based
on the real-world concepts of crowd density and fundamental diagrams.

Pettré et al. [120] have proposed subdividing a crowd into separate flows
according to density. They used Navigation Flow queries to dispatch many entities
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LoS Color Range Description

A Blue < 0.2 P/m2

ρ ∈ [0..0.036〉
Pedestrians can move freely. Conflicts are un-
likely.

B Green 0.2 – 0.45 P/m2

ρ ∈ [0.036..0.081〉
Pedestrians can move freely, but they begin to
notice others and might adapt their paths.

C Yellow 0.45 – 0.7 P/m2

ρ ∈ [0.081..0.126〉
Sufficient space for normal walking. Possible
conflicts in case of bi-directional flows.

D Orange 0.7 – 1.1 P/m2

ρ ∈ [0.126..0.198〉
Restricted freedom of selecting an individual
walking speed. Friction is very likely.

E Red 1.1 – 2.0 P/m2

ρ ∈ [0.198..0.36〉
Pedestrians often slow down or shuffle. Over-
taking is difficult, as are crossing flows.

F Purple > 2.0 P/m2

ρ ∈ [0.36..1]

Pedestrians resort to shuffling. Crossing and
bi-directional flows are nearly impossible.

Table 9.1: The Level-of-Service system used by Fruin [31]. ‘P/m2’ stands for ‘persons
per square meter’. We have translated this to a density range of [0, 1] using an average
pedestrian area of 0.18 m2. The LoS descriptions have been suggested by Daamen [23].
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Figure 9.3: A fundamental diagram describes the relation between crowd density (typically
expressed in persons per square meter) and the average walking speed of pedestrians
(in meters per second). Different researchers have obtained different diagrams based on
real-world observations. This is an adapted version of an image by Daamen [23].
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that move between shared locations. However, in our crowd simulations, charac-
ters may have individual start and goal positions that cannot be grouped, and we
would like to let each character use its own personal sensitivity to density. We will
therefore use navigation meshes and individual planning.

Our density-based planning algorithm is a generalization of the Fastest-Path Al-
gorithm by Höcker et al. [56]. This algorithm uses the density-speed relation to
compute the estimated traversal time of edges in the graph. By using these values as
weights during the search, the (estimated) fastest path can be obtained. Kneidl and
Borrmann [84] have shown that this Fastest-Path Algorithm can lead to behavior
that matches real crowds. However, this method uses a collection of squares to
approximate the local density information. These squares can overlap, which
causes some parts of the walkable space to be represented more than once. This
leads to a bias where some parts of the walkable space are implicitly considered
to be more important than other parts. Furthermore, some parts of the walkable
space may not be represented at all.

By contrast, our method maps density information onto the regions of a nav-
igation mesh, which are (usually) non-overlapping by definition. The use of
navigation meshes also automatically supports multi-layered environments. We
also generalize the edge cost function to let characters have individual sensitivities
to density influence. Another improvement is that we address the issue of (partial)
re-planning during the simulation.

9.3 Density-Annotated Navigation Mesh

This section describes how we annotate a navigation mesh with density information.
We will primarily use the Explicit Corridor Map (ECM); Section 9.3.3 will show
how the concept can be applied to other navigation meshes.

9.3.1 Density Cells

Recall from Chapter 4 that the ECM is a medial axis annotated with nearest-
obstacle information. Each edge in the ECM consists of two or more bending points,
each of which is annotated with its nearest obstacle point on the left and right
side. The edge therefore induces a sequence of one or more simple polygonal ECM
cells. For this chapter, our goal is to assign a single density-based cost to each ECM
edge. Therefore, we group the ECM cells of an edge ei into a single density cell
Di. In Chapter 4, we have shown that an environment with n obstacle vertices
yields an ECM with O(n) edges. Thus, there are O(n) density cells, each of which
corresponds to a unique ECM edge. An example is shown in Figure 9.4.

During the simulation, we will keep track of the current crowd density in each
density cell, which is an indication of the crowd density along the corresponding
ECM edge. Section 9.4 will describe how we convert these density values to
character-dependent edge traversal costs.
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(a) ECM

Di

ei

ej

Dj

(b) Density cells

Figure 9.4: Example of an ECM and its density cells. (a) The ECM of the recurring Military
environment. (b) ECM cells can be grouped per edge to obtain a set of density cells. Two
examples of density cells have been colored yellow and green.

9.3.2 Maintaining Density Values

Crowd density is often expressed in persons per square meter [160]. However, to
account for characters of different sizes, we define crowd density as the fraction of
an area that is occupied by characters.

As usual, we model characters as disks. To simplify the computation of densities
in real-time, we associate each character to a single cell, namely the cell in which
its centroid lies. This approximation is justified because characters move in each
simulation step and they are typically much smaller than the density cells.

Let Ci be the set of characters whose centroids lie inside density cell Di. We
compute the crowd density ρi of Di as follows:

ρi = min(1,

∑
c∈Ci

||c||
||Di||

)

where ||S|| denotes the area of a shape S (e.g. a disk or a polygon). Technically,
the measured density could exceed 1 because we associate each character to a
single cell, and because characters may overlap if local collision avoidance fails.
However, we explicitly enforce a maximum density of 1 because this is intuitively
the highest density that can be achieved. (If the simulation would be able to model
characters getting stacked or crushed, higher densities would be possible after all.)

During the simulation, it is straight-forward to update these density values
whenever a character is added, is removed, or has moved to a different density
cell. In Section 9.6, we will show that this can be done without affecting the
performance of the simulation.
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9.3.3 Using Other Navigation Meshes

We use the ECM because of its advantages mentioned in Chapter 4: the ECM
enables efficient path planning for disks of any radius, and it supports useful
operations such as retractions and the computation of indicative routes with
clearance. Also, there is a one-on-one correspondence between ECM edges and
density cells, which makes the ECM particularly useful for this chapter.

When using a navigation mesh other than the ECM, the mapping from cell
densities to ‘edge densities’ is slightly different. As mentioned in Chapter 7, most
other navigation meshes are defined in terms of polygonal regions, which can be
used directly as density cells. However, path planning is performed on the dual
graph of these regions, and an edge in this graph does not correspond to a single
density cell, but to a pair of adjacent cells. An appropriate density value for the
edge would be the average of the two cells’ densities, or a weighted average based
on which fraction of the edge lies in which cell. We will not investigate this further
because the mapping from density cells to edges is already clear in the ECM. Still,
we emphasize that our method can be applied to other navigation meshes as well.

9.4 Density-Based Path Planning Algorithm

In the following sections, we use the term path for a sequence of edges in the
graph, as in Chapter 8. A path in the ECM can be converted to an indicative route
(an actual curve for a character to follow) by using the techniques from Chapter 4.
In this chapter, we are only interested in the computation of paths.

Recall from Section 9.2 that a fundamental diagram encodes the relation
between crowd density and walking speed. Assuming that the crowd density is
given as a fraction, the fundamental diagram describes a function φ : [0, 1] → R≥0
that maps any density value to a non-negative typical walking speed.

Different researchers have suggested different definitions of the function φ, as
indicated in Figure 9.3. The function may even differ between scenarios or cultures.
However, all versions of φ have in common that the outcome decreases as the
density increases. In the following sections, we will use φ as an abstract concept.
In Section 9.6, we will define the specific function used in our experiments.

9.4.1 Edge Costs

In the ECM, the density ρi of a density cell Di can be used immediately as the
density along the corresponding edge ei. Given an appropriate function φ, the
estimated walking speed along an edge ei is given by φ(ρi), i.e. the typical walking
speed at the edge’s current density according to the fundamental diagram. The
maximum walking speed is φ(0), i.e. the speed that can be achieved at a density of
zero. Let l(ei) be the arc length of the edge, in meters. We define the cost of ei as
follows:
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cost(ei) = tmin(ei) + w · (tex(ei)− tmin(ei))

where tmin(ei) = l(ei)/φ(0) is the time required to traverse the edge ei at maximum
speed, tex(ei) = l(ei)/φ(ρi) is the current estimated traversal time due to the
density of ei, and w is a non-negative weight.

The weight w provides a natural means of interpolating between the shortest
path and the least dense path in the graph. If w = 0, characters will choose the
shortest path. If w = 1, characters will prefer the (estimated) fastest path as
described by Höcker et al. [56]. As w increases further, characters will have an
increasing desire to avoid dense regions. Note that it is possible for each character
to have its own personal value of w, or even its own function φ. This allows us to
model various types of behavior within a single crowd.

9.4.2 Algorithm

Planning a path from a point s to a point g is largely the same as in Chapter 4:
we retract s and g onto the medial axis and use the A* algorithm to compute a
path from the retraction Retr(s) to the retraction Retr(g). However, the algorithm
is now based on (weighted) time instead of distance. For the cost of an edge ei,
we use cost(ei) instead of l(ei). For the heuristic function h that estimates the
remaining cost for reaching the goal from a vertex V , we use the time to reach the
goal via a straight line at maximum speed, i.e. h(V ) = d(V, g)/φ(0). Note that this
heuristic is consistent and admissible: an edge is never shorter than a straight line,
and the actual density along an edge is never smaller than 0.

9.5 Re-planning

When a crowd is moving, the density values in the navigation mesh can change
rapidly. This means that characters should regularly re-plan their global paths to
respond to the latest changes in density.

In Chapter 8, we have presented ODPA*, an adaptation of the A* algorithm
for re-planning an optimal path after an obstacle has been added or removed.
However, this algorithm assumes that the graph costs have only changed in a
limited region. We cannot use the same approach in this chapter because the
crowd density may have changed arbitrarily throughout the entire environment.

Other re-planning algorithms such as D* Lite [85] do support arbitrary changes
in edge costs, but (as argued in Chapter 8) they may require too much memory
for crowds of many characters. Therefore, to let a character re-plan its path in the
presence of changing densities, it is preferable to compute a new path from scratch
using the standard A* algorithm.

We can, however, improve the efficiency of re-planning by letting characters use
density information only up to a certain distance, which we call the density viewing
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distance dD. This allows us to re-use parts of paths that were computed without
density information. The resulting paths are not necessarily optimal, but the
decrease in path planning time makes this approach attractive for large crowds.
Furthermore, if the crowd density changes rapidly, it is justified to ignore densities
of areas that are far away: these densities are likely to have changed by the time
the character re-plans again.

9.5.1 Planning with a Density Viewing Distance

We first explain how the density viewing distance dD is used in the regular planning
algorithm, using the same terminology as in Chapter 8. A character initially plans a
path from a graph vertex S to a graph vertex G. This initial A* search uses density
information as long as the path from S has a curve length of at most dD.

More specifically, let V be any vertex that is being expanded during the search,
and let [SV ] be the path computed so far, with curve length l([SV ]).

• If l([SV ]) ≥ dD, we assume zero density for all outgoing edges of V .

• Otherwise, we do use density information, but possibly only for parts of the
outgoing edges. For each neighboring vertex W , let eW be the edge from V

to W , with curve length l(eW ).

– If l([SV ]) + l(eW ) ≤ dD, then eW lies entirely within dD. We use the
density of eW normally, as described in Section 9.4.

– Otherwise, we use the density of eW only for the fraction f of the edge
that lies within dD, and we assume a density of zero for the remaining
part:

tex(eW ) = f · l(eW )

φ(ρW )
+ (1− f) · l(eW )

φ(0)

The result of this search will be a path [SG]− for which crowd density information
was only used up to a curve length dD, as shown in Figure 9.5a. Again, we use the
subscript − to denote the ‘old’ situation before the character re-plans.

9.5.2 Partial Re-planning with a Density Viewing Distance

Now assume that the character decides to re-plan its path at a vertex T ∈ [SG]−.
The goal is to compute a new path [TG]+. This path may overlap with the old
subpath [TG]−, but it can be quite different for two reasons: the crowd density
may have changed, and the character can now perceive the density of other areas.

The re-planning algorithm works largely as in the previous subsection: we use
density information as long as the path from T is not longer than dD. However,
a special case occurs when we arrive at a vertex of [TG]− that lies beyond dD in
both the old and the new situation. Let V be the first expanded vertex for which
this holds, i.e. the first expanded vertex V ∈ [TG]− for which l([SV ]−) ≥ dD and
l([TV ]+) ≥ dD. This situation is shown in Figure 9.5b. Because the old subpath
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[V G]− was already computed without using density information, and we cannot
use any density information to compute a new subpath [V G]+, we know that
[V G]+ = [V G]−. That is, the optimal path from V to G remains unchanged.

G

[SG]−dD

S

(a) Old path

G[V G]−

T

[TV ]+

V
dD

S

dD

(b) Re-planned path

Figure 9.5: Re-planning using a limited density viewing distance dD. (a) The initial path
[SG]− uses density information up to a path length of dD. (b) When re-planning from a
vertex T , we may arrive at a vertex V ∈ [SG]− that lies beyond dD in both the old and the
new situation. In this case, the old subpath [V G]− is still optimal.

We can now halt the search and return the concatenation of [TV ]+ and [V G]−

as the new path [TG]+. Note that this path is merely the optimal path via V , and
not necessarily the overall optimal path. If we would continue searching, we might
find a longer detour that yields a better path to G. However, we choose to stop the
search here because the character is already using limited information, so even an
‘optimal’ path is not necessarily optimal with respect to all density information. We
conclude that partial re-planning using dD may yield suboptimal paths in exchange
for faster re-planning. This is an important trade-off when simulating large crowds.

9.5.3 Effect of the Density Viewing Distance

The density viewing distance dD provides a trade-off between efficiency and path
quality. If dD = 0, then no density information is used at all, and re-planning
becomes unnecessary. If dD = ∞, then the character uses all available density
information, but re-planning is equivalent to a standard A* search from scratch.

A risk of choosing a small (but non-zero) value for dD is that characters can
become indecisive. The example shown in Figure 9.6 features two crowded areas
on the left and right side. Assume that a character has chosen to traverse the left
area because it could not yet see that area’s density information. If the character
re-plans when this area has become visible, the character will notice a high density
and plan a detour through the right area, which is currently invisible. As the
character traverses this detour, the right area becomes visible and the left area is
too far away again. Thus, when the character re-plans again, it will choose a new
detour through the left area. This pattern will repeat itself indefinitely.

To prevent such effects, we require a more sophisticated model of a character’s
knowledge about the environment. However, as indicated in Chapter 8, it is
currently unclear how to apply such memory models to large crowds efficiently.
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S

G

dD

(a) Old path

T

G

dD

(b) Re-planning

Figure 9.6: A small density viewing distance dD can make characters indecisive. (a) The
initial path [SG]− uses the left area, but that area’s density is not yet taken into account.
(b) The re-planned path [TG]+ uses the right area because the high density on the left is
now visible. The character will keep switching back and forth.

We leave these potential improvements for future work. In our experiments, we
will show how dD influences the re-planning time and not the crowd’s behavior.

9.6 Experiments and Results

In this section, we show how our density-based path planning algorithm performs
in a crowd simulation, and we analyze the influence of the algorithm’s parameters.
Only one CPU core was used, unless stated otherwise. We do not yet analyze the
real-time performance of the simulation; we save such experiments and discussions
for Chapter 10, in which the entire crowd simulation framework and its efficiency
will be treated.

9.6.1 Simulation Settings

Although our crowd simulation software allows characters to have different individ-
ual sizes, we modelled characters as disks with a radius of 0.24 m and a preferred
walking speed of 1.4 m/s, in line with the observations of Weidmann [160]. We
ran the simulations using a fixed simulation time step of 0.1 s. Chapter 10 will
describe our simulation software in more detail.

In our original publication [155], we performed all experiments without colli-
sion avoidance. In this thesis, we do include collision avoidance because it gives
a more realistic image of how our method can improve a crowd simulation. We
used our own implementation of a vision-based collision-avoidance method by
Moussaïd et al. [105]. We also included the Stream method by van Goethem et al.
[36] because it allowed us to simulate higher crowd densities. Furthermore, we
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let characters use the Indicative Route Method [74] to follow their indicative routes
smoothly. Chapter 10 will describe these components in more detail.

For the function φ that maps densities to typical walking speeds, we have
used a simple function that decreases linearly from φ(0) = 1.4 to φ(1) = 0. More
sophisticated functions can be implemented, but we expect that they will have
similar effects.

9.6.2 Explanation of the Density Weight Experiments

Our first experiments will show how the density weight w of our path planning
method affects the behavior of the crowd.

Environment. We use the Blocks environment shown in Figure 9.7. This is a test
environment from a previous paper on crowds and densities by Karamouzas and
Overmars [73]. We have added entry and exit regions that allow us to create a
dense crowd flow. The Blocks environment measures 50× 100 meters and contains
64 obstacle vertices. Its ECM consists of 40 vertices, 46 edges, and 150 bending
points; it was computed in 3.5 ms.

(a) ECM (b) Density cells

LS

RS

RG

LG

(c) Experiment setup

Figure 9.7: The Blocks environment used in our experiments. (a) The medial axis is shown
in blue; nearest-obstacle annotations are shown in orange. (b) The ECM edges induce a
subdividion into density cells. (c) The start region RS and goal region RG are shown in
blue. The red line segments LS and LG denote where our measurements for a character
start and stop.

In this environment, we ran simulations in which 15 or 30 characters per
second (i.e. an average of 1.5 or 3 per simulation step) were added at uniformly
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chosen random positions in a start region RS at the bottom of the environment.
We will use the symbol c to denote the number of characters that are spawned per
second. Each character received a random goal position in a region RG at the top.
These regions are shown in Figure 9.7c. Characters computed an optimal path in
the ECM, which was then converted to a short path with a preferred clearance of
5m to obstacles, using the techniques from Chapter 4. The preferred clearance
was set this high because lower values caused characters to get stuck at obstacle
corners too often.

Variables. We varied three simulation properties: the number of characters per
second c (15 and 30), the density weight w (0, 1, 3, 5, 10, and 20), and whether
or not the characters could re-plan. The results for all combinations of settings
will be discussed in Sections 9.6.3 and 9.6.4.

Our method allows each character to use its own personal parameter settings,
such for the density weight w. However, to show the effect of the parameter w
more clearly, we will not vary this value between characters in the entire crowd.

Measurements. We measured the path length and average walking speed of each
character. We performed these measurements only between the line segments
LS and LG shown in Figure 9.7c, to focus on the areas in which characters could
make decisions. For the same reason, we removed a character as soon as it crossed
LG, to prevent overcrowding in the goal region RG.

To allow the environment to get filled with characters first, we excluded the
results of characters that crossed LS within the first 100 simulation seconds. We
stopped measuring at 500 simulation seconds, and we only used the data of
characters that had reached their goal by that time. In other words, if T denotes
the total simulation time that has passed, we performed measurements between
T = 100 and T = 500. We also kept track of the average and maximum density of
each region between T = 100 and T = 500.

Visualization. We will show three figures for each combination of settings. The
left figure will show the crowd at T = 500, just before the simulation ends. The
middle figure will show the average density per region, and the right figure will
show the maximum density per region.

We visualize densities using the color scale suggested by Fruin [31] and shown
in Table 9.1. To convey more information, we interpolate between the colors of this
scale: for example, we interpolate from green at ρ = 0.036 to yellow at ρ = 0.081.
All densities above ρ = 0.36 are displayed in purple.

9.6.3 Density Weight Without Re-planning

We first performed the experiment without re-planning. Visual results are shown
in Figures 9.10 to 9.13. Quantitative results are shown in Table 9.2.
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We first discuss the results for a spawn rate of 15 characters per second (c = 15).
At w = 0, all characters compute the same shortest path in the ECM. Many parts of
the environment are never used, which results in an average and maximum density
of zero in many regions. As we increase the value of w, characters gradually
start using more alternative paths. However, these alternatives are explored in
a wave pattern. Initially, all characters follow the shortest path. As soon as the
corresponding regions get too crowded, the subsequent characters will choose a
different path— until this path get too crowded again and another path becomes
more attractive. Various paths take turns in being the most attractive option, but
not many paths are used at the same time because characters do not re-plan.

This effect is clearly visible in Figures 9.10 and 9.11. At each point in time, the
crowd is focused on particular routes (shown in the left subfigures). For higher
values of w, the average density (shown in the middle) is spread more evenly
throughout the environment, but the maximum densities (shown on the right)
remain high because many regions are overused at some point in the simulation.

In crowded areas, some characters were pushed away by the crowd to such a
degree that they could not follow their routes anymore, which caused them to get
stuck behind obstacles. However, a rate of 15 characters per second is not yet high
enough to lead to highly problematic traffic jams. Table 9.2 confirms this: higher
values of w lead to longer paths because longer detours are used, but the average
speed of the characters does not change because the crowd is never too dense.

When we increase the spawn rate to c = 30, the crowd becomes too dense for our
simulation model in this scenario, and traffic jams occur for all values of w. The
worst situation occurs at w = 0; increasing w does lead to more diversity, but each
value of w yields its own bottlenecks at which characters get stuck. The second half
of Table 9.2 shows that higher values of w still allow characters to explore longer
paths. This time, higher values of w also appear to yield higher walking speeds,
but the results are strongly influenced by which congestion is (coincidentally) the
most unfortunate.

Admittedly, the occurrence of traffic jams depends on many other simulation
settings as well, such as the type of indicative routes, the collision avoidance
method, and the inclusion or exclusion of Stream. We have attempted to choose
the best settings for this scenario, i.e. the settings at which we could test our
method at the highest possible densities. Our results indicate that density-based
planning alone cannot solve all problems in the crowd because many other factors
are involved. In Chapter 10, we will describe our overall simulation framework,
and we will discuss its limitations.

9.6.4 Density Weight With Re-planning

Next, we repeated this experiment with the additional property that each character
re-planned its path every 5 seconds. This reduced the wave patterns and resolved
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the congestions for c = 30. Figures 9.14 to 9.17 show crowds and densities;
Table 9.3 provides quantitative results.

For c = 15, increasing w causes characters to explore more alternative routes, just
like in the previous experiment. With re-planning included, we now also see that
more different routes are used at the same time. (Even at w = 0, some characters
use an alternative path if they happen to be near the left side of the first obstacle
when they re-plan.) This results in a better distribution of average and maximum
densities. Compared to the experiment without re-planning, we also obtain lower
traversal times and higher speeds. After all, the characters can now repeatedly
update their paths based on the most recent density information.

The results for c = 30 are similar to those for c = 15, but the improvement
caused by re-planning is more clearly visible. While the crowd still gets congested
at w = 0, setting w to 1 immediately resolves this problem. Table 9.3 reflects this:
the average walking speed is much higher at w = 1, and many more characters
reach their goal in time. Increasing w further leads to longer paths and higher
walking speeds, as expected.

These results show that the combination of density-based planning and re-
planning is a powerful tool: it creates a diverse crowd flow, and it allows characters
to use the environment more efficiently.

Even with re-planning enabled, though, we can still observe clusters of characters
that follow the same route at the same time. This is partly due to the Stream
method that lets each character adapt its speed and direction to its neighboring
characters. Preliminary experiments have shown that disabling Stream reduces the
effect but causes local collision-avoidance problems at c = 30. Another solution is
to assign different values of w to different characters, such that characters in the
same area at the same time are less likely to make the same decisions.

9.6.5 Efficiency of Partial Re-planning

In our last experiment, we tested the performance of our re-planning algorithm
from Section 9.5 using various values of the density viewing distance dD. We only
look at the running time of the algorithm and not at the behavior of the crowd.

For this experiment, we used the City environment from previous chapters
because it is more complex than the Blocks environment. We simultaneously added
10,000 characters to the environment, each with a (uniformly sampled) random
start and goal position. We gave each character a density weight w = 10 so that
many different paths would be explored, and we let each character re-plan its path
every 10 seconds, using the adapted version of A* from Section 9.5. Whenever a
character reached its goal, it received a new goal at a new random position, and
its re-planning timer was reset.

All characters in the crowd used the same density viewing distance. We
performed this experiment multiple times with the following values of dD: 0.1,
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c w #Finished Average Average Average
characters time (s) distance (m) speed (m/s)

15 0 4320 111.71 [3.79] 116.51 [0.70] 1.04 [0.03]
1 4270 117.34 [15.40] 119.61 [3.76] 1.03 [0.10]
3 4273 117.53 [12.95] 122.11 [4.80] 1.05 [0.10]
5 4278 119.77 [18.06] 122.50 [4.91] 1.04 [0.11]

10 4179 124.42 [26.98] 124.54 [7.94] 1.03 [0.14]
20 4256 121.34 [13.5] 126.83 [9.49] 1.05 [0.10]

30 0 3000 199.39 [54.75] 122.39 [2.96] 0.66 [0.17]
1 4984 168.22 [46.51] 124.90 [5.42] 0.79 [0.20]
3 3050 142.72 [31.00] 124.25 [6.12] 0.91 [0.18]
5 4317 150.24 [35.23] 127.03 [10.69] 0.88 [0.18]

10 4647 146.35 [27.75] 128.38 [12.88] 0.90 [0.16]
20 5399 143.05 [26.87] 132.04 [15.33] 0.94 [0.13]

Table 9.2: Results of the density weight experiment without replanning. Each row corre-
sponds to a combination of settings for c (the number of characters that were added per
second) and w (the density weight). The third column denotes the number of characters
that have reached their goal during the measurements. The remaining columns contain
statistics about the traversed paths, averaged over all characters that have reached their
goal. Standard deviations are shown between square brackets.

c w #Finished Average Average Average
characters time (s) distance (m) speed (m/s)

15 0 4441 104.52 [3.44] 115.90 [0.62] 1.11 [0.04]
1 4488 101.61 [2.54] 117.35 [2.19] 1.16 [0.03]
3 4485 102.40 [3.55] 119.75 [3.39] 1.17 [0.03]
5 4410 106.09 [5.19] 123.35 [5.91] 1.16 [0.04]

10 4323 109.99 [7.57] 128.91 [10.16] 1.17 [0.04]
20 4235 113.94 [10.18] 134.11 [12.59] 1.18 [0.04]

30 0 4767 193.09 [43.95] 123.15 [2.78] 0.67 [0.16]
1 8457 117.04 [8.06] 120.00 [3.05] 1.03 [0.08]
3 8404 118.10 [8.05] 126.24 [8.84] 1.07 [0.07]
5 8338 120.47 [9.27] 130.71 [11.15] 1.09 [0.06]

10 8326 122.85 [11.33] 134.20 [12.63] 1.09 [0.05]
20 8329 124.48 [12.60] 136.20 [13.44] 1.10 [0.05]

Table 9.3: Results of the density weight experiment with replanning.
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100, 200, 350, 500, and 100,000 meters. (The highest value is essentially infinite in
the City environment). All other character settings remained the same as in the
previous experiments.

We ran the simulation for 50 seconds to ensure that many re-planning actions
were performed. For each re-planning action, we measured the time spent on
re-planning the path based on the previous path.

Figure 9.8 shows the re-planning times for particular values of dD. These running
times comprise the entire process of obtaining a path as a sequence of ECM vertices.
This includes the time spent on copying parts of the old path into the new path.

With dD = 100,000 m (Figure 9.8a), the paths are essentially re-planned from
scratch, and the characters can use all available density information. While outliers
exist, most of the re-planning queries took under 0.5 ms. The most complex paths
(of 60 or more vertices) took between 0.4 ms and 0.5 ms to compute on average.
Note that lower path complexities occurred more often.

Decreasing dD to 350 m (Figure 9.8b) or 200 m (Figure 9.8c) decreases the
re-planning time for complex paths in particular. This is logical because paths of
many vertices are typically longer, which means that they exceed dD more quickly.
At dD = 200 m, the average re-planning time was always below 0.1 ms, and they
remained almost constant for paths of 30 or more vertices. Finally, at dD = 0.1 m
(Figure 9.8d), the search practically terminates immediately, and re-planning is
reduced to simply copying a path.

Figure 9.9a compares the A* times for each value of dD in a single diagram.
For simplicity, we have averaged the running times for each distinct path length.
Therefore, the curves in this figure correspond to the black dots in Figure 9.8.

This figure clearly shows how lower values of dD lead to faster re-planning,
especially for paths with many vertices. On the other hand, a lower value of dD
means that characters use less density information. Thus, the viewing distance can
improve re-planning times in exchange for a loss of information.

Finally, Figure 9.9b compares the total re-planning times. As in Section 8.6,
the total re-planning time includes the time for A* and the time for computing
a short indicative route with clearance. Because this indicative route is always
recomputed from scratch, the differences between values of dD are less apparent.
At d = 0.1, the running time scales roughly linearly with the path length. The
results can be improved further by repairing the indicative routes only partly. We
leave this improvement for future work.

In summary, the efficiency of re-planning can be improved by lowering the density
viewing distance dD. This gives characters limited density information, but it
may be useful if the application at hand requires higher performance. However,
in this particular environment, many paths can already be re-planned within a
millisecond even without using dD. This is most likely sufficiently fast for many
real-time applications with large crowds. In Chapter 10, we will analyze how many
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(a) dD = 100,000
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(b) dD = 350
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(c) dD = 200
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(d) dD = 0.1

Figure 9.8: Running times for re-planning paths using various values of the density viewing
distance dD. The horizontal axis denotes the number of ECM vertices on the re-planned
path. The left vertical axis denotes the running time (in milliseconds) of A*. The gray
histogram and the right vertical axis indicate how often each path length occurred. For
each path length, the average planning time is shown as a black dot, and the full range of
planning times is shown as a red box plot.
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(b) Total time

Figure 9.9: Comparison of the average re-planning times for different values of dD. Times
have been averaged for each distinct path length. (a) The time spent on recomputing a path
of ECM vertices. (b) The total re-planning time, including the time spent on recomputing
an indicative route from scratch.
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characters can be simulated in real-time in a range of environments, combined
with re-planning, collision avoidance, and all other simulation components.

9.7 Conclusions and Future Work

In crowd simulations, it is common to let characters compute short paths to their
goals. However, at high densities, popular areas of the environment can become
congested while other areas are underutilized. In this chapter, we have shown how
to annotate a 2D or multi-layered navigation mesh with crowd density information.
Our density-based path planning algorithm converts this density information to
edge costs in the navigation graph, based on a real-world relation between density
and speed (known as the fundamental diagram). This algorithm allows characters
to prefer detours around crowded areas. Each character can have its own sensitivity
to density-based delays. These concepts can be applied to any navigation mesh.

Characters need to re-plan their paths regularly to respond to the most recent
changes in density. The efficiency of re-planning can be improved by giving
characters a limited distance along which they perceive density information.

We have implemented density-based crowd simulation based on the Explicit
Corridor Map (ECM) from Chapters 4 and 5. Our experiments suggest that density-
based path planning and re-planning can automatically divide the crowd over
multiple routes. This leads to a more efficient and realistic-looking crowd flow.
Furthermore, this behavior is emergent: it is based only on the individual decisions
of each character. Crowd densities in the navigation mesh can be maintained
efficiently, and the planning algorithm can be used in simulations of tens of
thousands of characters in real-time.

Discussion. A limitation of our approach is that density information is summarized
per region of the navigation mesh. Our planning algorithm will not recognize
a crowded sub-area within a large region, such as a cluster of characters in the
middle of a long or wide cell. A related problem is that global and local planning
are still detached in our simulation model. If a group of characters is blocking
the way without contributing sufficiently to the crowd density, it may be better
to model this group as a dynamic obstacle using the techniques from Chapters 6
and 8.

We would like to obtain more insight in the effects of our simulation’s parame-
ters, including the density weight w and the density viewing distance dD. While
the meaning of the weight w is intuitive, it is not yet clear which value achieves the
best behavior in a particular environment. We have also noticed that many other
simulation aspects (e.g. the collision-avoidance method, the types of indicative
routes, or the presence of the Streams method) affect the overall results, and that
it is difficult to choose the appropriate settings for a particular scenario.

Thus, we do not claim that our density-based path planning method can solve
all potential density-related problems in a crowd simulation. It should rather be



177

9.7. Conclusions and Future Work

seen as a component that can be plugged into the simulation (without strongly
affecting the overall computation time) to make the crowd more diverse, visually
pleasing, and possibly more efficient when using the appropriate parameter settings
for the scenario at hand.

Future work. Next to using density information, we are also interested in looking
at the flow direction of a crowd. For instance, a character may prefer paths along
which not too many characters are moving in the opposite direction. Experimental
research [89, 167] has shown that bidirectional pedestrian flows have different
fundamental diagrams than unidirectional flows, but that the difference in walk-
ing speed is significant only at higher densities. We therefore expect that flow
information will play an important role in high-density scenarios such as crowd
evacuation.

We have shown that re-planning is necessary to obtain a convincing crowd flow.
It would be interesting to trigger re-planning actions based on specific events rather
than simply re-planning paths periodically. An example of such an event would be
the discovery of a high-density region in a character’s vicinity. This would require
a memory model to represent a character’s knowledge of density information. This
model could be updated based on visibility, such that a character learns about
the density of a region when it becomes visible. Such a model could also prevent
characters from being too indecisive, as noted in Section 9.5.3. Just like for the
re-planning algorithm of Chapter 8, the main challenge is to find a model that is
sufficiently sophisticated while still allowing real-time simulations of large crowds.

Finally, we have used real-world concepts to improve global planning, but we
have yet to discover whether the resulting behavior is actually similar to that of
real crowds. Comparing simulations to real-world data (e.g. based on fundamental
diagrams [11]) is a research topic in development that poses many challenges.
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(a) Crowd (w = 0, c = 15) (b) Average density (c) Maximum density

(d) Crowd (w = 1, c = 15) (e) Average density (f) Maximum density

(g) Crowd (w = 3, c = 15) (h) Average density (i) Maximum density

Figure 9.10: Results of the density weight experiment from Section 9.6.3 for w = 0, w = 1,
and w = 3, with 15 characters per second, and without re-planning.
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(a) Crowd (w = 5, c = 15) (b) Average density (c) Maximum density

(d) Crowd (w = 10, c = 15) (e) Average density (f) Maximum density

(g) Crowd (w = 20, c = 15) (h) Average density (i) Maximum density

Figure 9.11: Results of the density weight experiment from Section 9.6.3 for w = 5,
w = 10, and w = 20, with 15 characters per second, and without re-planning.
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(a) Crowd (w = 0, c = 30) (b) Average density (c) Maximum density

(d) Crowd (w = 1, c = 30) (e) Average density (f) Maximum density

(g) Crowd (w = 3, c = 30) (h) Average density (i) Maximum density

Figure 9.12: Results of the density weight experiment from Section 9.6.3 for w = 0, w = 1,
and w = 3, with 30 characters per second, and without re-planning.
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(a) Crowd (w = 5, c = 30) (b) Average density (c) Maximum density

(d) Crowd (w = 10, c = 30) (e) Average density (f) Maximum density

(g) Crowd (w = 20, c = 30) (h) Average density (i) Maximum density

Figure 9.13: Results of the density weight experiment from Section 9.6.3 for w = 5,
w = 10, and w = 20, with 30 characters per second, and without re-planning.
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(a) Crowd (w = 0, c = 15) (b) Average density (c) Maximum density

(d) Crowd (w = 1, c = 15) (e) Average density (f) Maximum density

(g) Crowd (w = 3, c = 15) (h) Average density (i) Maximum density

Figure 9.14: Results of the density weight experiment from Section 9.6.4 for w = 0, w = 1,
and w = 3, with 15 characters per second, and with re-planning.
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(a) Crowd (w = 5, c = 15) (b) Average density (c) Maximum density

(d) Crowd (w = 10, c = 15) (e) Average density (f) Maximum density

(g) Crowd (w = 20, c = 15) (h) Average density (i) Maximum density

Figure 9.15: Results of the density weight experiment from Section 9.6.4 for w = 5,
w = 10, and w = 20, with 15 characters per second, and with re-planning.
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(a) Crowd (w = 0, c = 30) (b) Average density (c) Maximum density

(d) Crowd (w = 1, c = 30) (e) Average density (f) Maximum density

(g) Crowd (w = 3, c = 30) (h) Average density (i) Maximum density

Figure 9.16: Results of the density weight experiment from Section 9.6.4 for w = 0, w = 1,
and w = 3, with 30 characters per second, and with re-planning.



185

9.7. Conclusions and Future Work

(a) Crowd (w = 5, c = 30) (b) Average density (c) Maximum density

(d) Crowd (w = 10, c = 30) (e) Average density (f) Maximum density

(g) Crowd (w = 20, c = 30) (h) Average density (i) Maximum density

Figure 9.17: Results of the density weight experiment from Section 9.6.4 for w = 5,
w = 10, and w = 20, with 30 characters per second, and with re-planning.
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10 A Generic Crowd
Simulation Framework

In this final chapter before the conclusion of this thesis, we propose a multi-level
framework to generically describe crowd simulation systems, and we present our
own implementation of this framework based on the ECM navigation mesh.

This chapter is based on the following publications:

• N.S. Jaklin, W.G. van Toll, and R. Geraerts. Way to go - a framework for multi-
level planning in games. In Proceedings of the 3rd International Planning in
Games Workshop, pages 11–14, 2013. [64]

• W. van Toll, N. Jaklin, and R. Geraerts. Towards believable crowds: A generic
multi-level framework for agent navigation. In ASCI.OPEN / ICT.OPEN (ASCI
track), 2015. [151]

• W. van Toll, N. Jaklin, and R. Geraerts. A generic multi-level framework
for agent navigation, 2015. Poster at the 8th ACM SIGGRAPH International
Conference on Motion in Games. [150]

10.1 Introduction

In Chapter 1 of this thesis, we have explained that path planning and crowd
simulation are increasingly important problems in both computer games and
serious gaming applications such as crowd management, evacuation studies, and
safety training. In a crowd simulation, virtual characters need to autonomously
find and traverse paths through a virtual environment. Characters should act in
a realistic manner: their trajectories must be short and smooth, there should not
be any collisions between characters, and (in many applications) the characters
are expected to mimic human behavior. Furthermore, the simulation should be
efficient even if the crowd is very large or dense.

In short, characters in the simulation need to perform multiple tasks that
reach beyond a simple path planning algorithm. A crowd simulation system
therefore requires multiple levels of planning, for which a navigation mesh is a
useful representation of the environment. We have briefly touched upon this in
Chapters 1 and 2 when we explained which subtasks are involved in a crowd
simulation.

In this chapter, we describe this idea in more detail: we propose a generic five-level
hierarchy for solving character navigation problems. We also present our own
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algorithms and implementations of the three center levels, which concern the
geometric aspects of path planning and crowd simulation.

Our crowd simulation software uses the ECM navigation mesh from Part II of
this thesis, and we have used it for the experiments in many chapters of Parts II
and III. The software is modular (algorithms can be combined freely to obtain
various types of behavior) and extensible (new components can be added easily).
We describe the architecture of this software, we show that it can simulate large
crowds in real-time, and we provide various examples of how the software has
been used in practice.

Compared to our original publications [64, 151], we omit discussions of the
ECM because these have already been included in Chapters 4 and 5. We also pro-
vide more implementation details and a more thorough analysis of the software’s
performance.

The remainder of this chapter is structured as follows:

• Section 10.2 summarizes related work on crowd simulation frameworks.

• Section 10.3 describes our multi-level planning hierarchy and highlights the
most important related work per level.

• Section 10.4 discusses the implementation of our crowd simulation software
and explains how it was made to be modular, extensible, and efficient.

• In Section 10.5, we show that our software can simulate large crowds of
heterogeneous characters in real-time, and we show how the software has
been used in practice to perform simulations of real-world scenarios.

• Finally, Section 10.6 concludes the chapter and outlines future work.

10.2 Related Work

We refer the reader to Chapter 2 for general related work on crowd simulation
and navigation meshes. For this chapter, we discuss various crowd simulation
frameworks and programs, and we explain how they differ from our work.

Several commercial software frameworks exist for crowd simulation and analysis in
serious applications. Examples of such frameworks include Legion [96], MassMo-
tion [109], Pedestrian Dynamics [60], SimWalk [134], STEPS [138], and VisWalk
[125]. One of these uses our ECM software as a ‘black box’ for the geometric
aspects of the simulation, combined their own event-based system [60]. Most
other simulation frameworks do not automatically compute an efficient navigation
mesh; thus, they require more manual work.

In the entertainment industry, the Unity3D game engine has recently adopted
the Recast software for the automatic generation of navigation meshes. We have
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used the stand-alone version of Recast in our comparative study of Chapter 7.
Golaem Crowd [37] started out as a similar package, but it has shifted its focus
to high-quality plug-and-play crowds for entertainment applications. Massive
[101] is a well-known software package that has been used for generating crowd
behavior in many movies and games.

In the research community, SteerSuite [135] is used for simulating and evalu-
ating algorithms for e.g. collision avoidance between characters. ADAPT [133] is
a platform for developing agent behavior with an emphasis on animation. SimPed
[22] and NOMAD [58] are models for passenger flows, based on real-world ob-
servations. They focus mostly on detailed behavioral models for each character.
MomenTUMv2 [82] is a framework that focuses more on modeling of scenarios.
The work closest to our own is Menge [21], a system in development that uses a
multi-level hierarchy similar to ours. Menge has been combined with the theory of
fundamental diagrams for the purpose of validation [11].

Our work differs in that it presents a more generic solution for the geometric
aspects of path planning and crowd simulation. In terms of theory, we treat route
following as a separate level for better flexibility. In terms of implementation, our
ECM navigation mesh has many advantages, such as a small memory footprint, fast
query times, independence of agent sizes, and support for dynamic environments.
Also, we include specialized algorithms for route planning and route following in
weighted regions, which we will explain further in Section 10.3.

10.3 Multi-Level Planning Hierarchy

We propose a generic framework for crowd simulation systems. The framework
consists of five levels stacked in a ‘hierarchy’. Figure 10.1 shows an overview of this
hierarchy. Using a single character as an example, the levels can be summarized
as follows:

• High-level planning uses AI techniques to translate a semantic action (e.g.
‘go home’) to one or more geometric queries (‘find a path from position s to
position g’).

• Global planning computes an indicative route, i.e. a path from s to g that
should be roughly followed.

• The following two levels update the character in every step of the simulation
loop. Path following lets the character choose a preferred velocity such that it
follows the indicative route. Note that a velocity is a 2D vector that encodes
both speed and direction.

• Local movement uses the preferred velocity to compute a new velocity that
deals with local situations, e.g. to prevent collisions with other characters or
to maintain coherence in a social group of characters. The simulation then
applies this velocity through time integration.
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Figure 10.1: A five-level hierarchy for path planning and crowd simulation. Our research
focuses on the three center levels, which concern the geometric aspects of planning. The
environment can be represented by a navigation mesh, and it might contain weighted regions.

• Finally, animation handles the visual movement of the character, down to its
3D skeleton representation. The animation is typically updated at a higher
framerate than the simulation itself.

10.3.1 High-Level Planning

At the top of the hierarchy, high-level planning translates the desired semantic
behavior of a character to geometric path planning problems. First, a character’s
abstract task such as ‘take the train to work’ can be converted to a list of more
concrete tasks, e.g. ‘go to the train station, buy a train ticket, go to the correct
platform, enter the train’, and so on. Each item of this list is of the form ‘go
from position A to position B and (possibly) perform an action at position B’. Of
course, to let characters create such a plan automatically, the environment must
be annotated with semantic data. In this example, such annotations would be
the location of the train station in the environment, and the locations of ticket
machines within the station.

High-level planning is a research topic of its own, involving artificial intel-
ligence (AI) techniques such as STRIPS [28] and Hierarchical Task Networks
[80]. Cognitive decision-making models have also been applied to a number of
crowd simulations [116, 132, 165]. Throughout this thesis, we have focused on
geometric planning (i.e. the center three levels of the hierarchy in Figure 10.1)



191

10.3. Multi-Level Planning Hierarchy

and not on these high-level tasks. Our ECM-based simulation software provides
solutions for the geometric aspects of path planning and crowd simulation. It can
be plugged into any other system that performs AI-related tasks, as long as this
system produces specific start and goal positions for a character.

10.3.2 Global Route Planning

Next, global route planning uses the character’s current position and goal position
to compute a geometric route through the environment. In line with the rest of
this thesis, we refer to the result as an indicative route because it is a preliminary
indication of how the character should move. Having an indicative route that
is followed roughly (instead of a path that is followed exactly) yields greater
flexibility in the lower levels of the hierarchy.

An indicative route can be any curve through the free space. In practice, it is
often a piecewise linear curve given by a sequence of bending points. Chapter 4
has explained how to compute indicative routes in the ECM: we first perform an
A* search on the medial axis to obtain a sequence of ECM edges, from which we
can then obtain various types of indicative routes, such as a route that stays on
the left or right side of the walkable space, or a short route that keeps a preferred
distance to obstacles.

As explained in Chapter 3, it is common to let the A* search algorithm compute
a shortest path through the graph, but other options are possible. For instance,
Chapter 9 has used crowd density information to compute (expected) fastest paths,
and Geraerts and Schager have used visibility information to plan stealthy routes
along which a character is not seen by others [34]. Linear programming techniques
can solve global route planning queries for multiple characters in the same crowd,
which simulates global coordination between groups of characters [75].

Another option is that the environment contains weighted regions. These
are regions annotated with particular surface types (such as ‘road’ or ‘grass’)
or psychological properties (such as ‘attractive’ or ‘unsafe’) that characters can
translate to a personalized weight or traversal cost. For instance, this can be used
to model characters that prefer to stay on the sidewalk, but that may cross the
road or move through muddy terrain if required. Planning optimal global routes in
such environments is computationally difficult, but provably good approximating
techniques exist [63]. Figure 10.3 shows an example.

Navigation in weighted regions has proven to be considerably more complex
than navigation in environments that are simply subdivided into ‘free space’ and
‘obstacle space’. These are generally treated as two separate problems that need to
be solved with separate data structures and algorithms. We refer interested readers
to the PhD thesis of Jaklin [61] which provides various solutions for character
navigation in weighted regions. Some of this work is also included in our ECM-
based crowd simulation framework (Section 10.4), but our representations of the
free space (i.e. the navigation mesh) and the weighted regions are detached.
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patt

vpref

(a) Route following

vnew

(b) Local movement

Figure 10.2: (a) At the route following level, a character (shown in orange) computes
an attraction point patt (red) on its indicative route (dark blue). This leads to a preferred
velocity vpref (black). (b) At the local movement level, a character computes a velocity
vnew (shown in black) that is close to vpref (dotted black) and that avoids collisions with
neighboring characters.

10.3.3 Route Following

Route following ensures that a character follows its indicative route πind smoothly
during the simulation. The goal of this level is to compute a preferred velocity vpref

for the character in each time step of the simulation.

Many researchers and frameworks do not treat route following as a separate level.
However, we believe that route following is crucial for the following reasons:

• The indicative route is generally not smooth. One could smoothen it be-
forehand, but route following lets a character follow a smooth version of its
route on the fly, based on its current position in the environment.

• Algorithms for collision avoidance (as described in the next subsection)
typically require a preferred velocity as input. Unless the character can walk
towards its goal in a straight line, we need an algorithm that can compute an
appropriate ‘sub-goal’ and a corresponding walking direction at any moment
during the simulation.

• Due to the presence of other characters, a character is often not located
exactly on πind. A route following algorithm can define how the character
should gradually move back onto the desired route.

• The virtual environment may contain weighted regions that are less or more
attractive to traverse. A route following algorithm can take this into account,
e.g. to let a character cut corners based on its personal preferences.

Two recent algorithms for route following are based on attraction points: in each
simulation step, they choose an attraction point patt on the indicative route towards
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Figure 10.3: Route planning and route following in weighted regions. Each character can
use its own personal region costs. The environment is a forest (green) with tree obstacles
(black), puddles (blue), fallen trees (brown), and a spot with a panoramic view (light gray).
For two characters (adult and child), we compute an indicative route (solid and dashed
black, respectively) by using a grid that uses personalized region weights. The smoothed
paths (solid and dashed red) are computed using the MIRAN method [62].

which the character wants to move. The preferred velocity is then computed as the
vector that takes the character to patt at its preferred walking speed. Figure 10.2a
summarizes the concept of route following. It is comparable to one of the ‘steering
behaviors’ described by Reynolds [126], who was among the first to acknowledge
route following as a separate process.

The first algorithm, the Indicative Route Method (IRM) [74], defines patt as the
farthest point along πind that lies inside the largest obstacle-free disk containing
the character’s position. When more free space is available, patt lies farther along
the route and the amount of smoothing increases.

The successor of IRM, called Modified and Indicative Routes and Navigation
(MIRAN) [62], defines a set of candidate attraction points along πind and chooses
patt as the best candidate according to the character’s personal region preferences.
In other words, the amount of smoothing and route shortening depends on the local
region costs for that particular character. A user-controlled parameter determines
how far along the route the candidate attraction points are allowed to lie which
controls how closely the character will follow the route. Figure 10.3 shows an
example of the results produced by the MIRAN method.

10.3.4 Local Movement

At the local movement level, the character might temporarily deviate from its route
to resolve local collisions with other characters.
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In early collision-avoidance algorithms, characters exerted attractive and repul-
sive forces, and physical laws of motion yielded new velocities for each character
[46, 126]. A disadvantage of these models is that they are inherently reactive, in-
stead of letting the characters actively choose how to move based on the movement
of other characters.

Hence, more recent algorithms are based on velocity selection [9, 76, 105].
These algorithms let a character pick the best speed and direction from a range of
options, based on a cost function. The cost of a candidate velocity is based on the
difference to the character’s preferred velocity vpref, and on the predicted collisions
with other characters based on their current movement. Thus, the character
attempts to choose a velocity vnew that avoids collisions while being similar to vpref.

Next to collision avoidance, local movement can also include other types of
actions in which the character adapts its velocity in response to a local situation.
For example, in the Stream model [36], a character adjusts its movement to match
the average velocity of all neighboring characters that are moving in a similar
direction. This improves the flow in dense crowds. Also, local rules can be used to
simulate the behavior of small social groups of characters [77, 87].

Algorithms for local movement are usually based on a small number of neighboring
characters within the character’s field of view. Finding these neighboring characters
is a computationally expensive step of the simulation loop. A data structure such
as a kd-tree is suitable for answering nearest-neighbor queries [7]. Since the
distribution of characters in the environment is constantly changing, this query
structure is typically rebuilt in each simulation step. Our own software uses
nanoflann, a high-performance implementation of a kd-tree [107].

When all characters have computed a new velocity, their positions are updated
using time integration [74] and the next simulation step begins.

10.3.5 Animation

Finally, the animation level produces visual output by animating and translating
the character’s 3D model in the environment [6]. This is relatively simple if pre-
recorded 3D motion clips are available. Producing smooth and physically correct
animations without requiring such data is an active research topic that is outside
the scope of this thesis.

Note that the animation and the simulation usually have different framerates.
Crowd simulations often use a fixed timestep of 0.1 seconds (i.e. 10 frames per
second) [74], whereas smooth animation requires a much higher framerate, up
to 60 or more frames per second in real-time gaming applications. We therefore
assume that the animation level uses a separate loop. Whenever a simulation step
finishes and all agent positions have been updated (in the simulation model only),
the animation layer is notified and visually brings the agents to their new positions.
Interpolation can be used to account for the differences in framerate.
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10.3.6 Communication Between Levels

It is important to note that the planning process of our hierarchy is not purely serial.
Events in the lower levels may cause a character to reconsider its global route.
For instance, when an agent has reached its goal position, it returns to the global
planning or high-level planning level to determine its next action. A character
could also be triggered to perform a new action when a particular animation has
finished. Another example is re-planning: if a part of the environment turns out to
be too crowded, or if a section of the indicative route is unexpectedly blocked by a
dynamic obstacle, an agent may choose to reconsider its route and take a detour,
as discussed in Chapter 8. In Figure 10.1, this communication between levels is
indicated by dotted arrows that point from lower to higher levels.

10.4 Implementation Details

In this section, we describe our crowd simulation software based on the ECM
navigation mesh. The software has been used throughout various chapters of
this thesis. It implements the three center levels of the generic framework from
Section 10.3. Thus, it can be applied to the geometric planning problems induced
by a high-level planner, and its results can be sent to e.g. a game engine to add a
sophisticated animation component.

The ECM software has been written in platform-independent C++. It uses
components of the Boost library [14] for Boolean geometry operations and for
computing Voronoi diagrams. Optional dependencies include Vroni (for computing
the ECM in an alternative way; see Section 4.4) and OpenGL (for visualization in
our own demo projects). For this thesis, the code has been compiled using Visual
Studio 2013, but it has proven to compile and run successfully on Linux as well.

10.4.1 Environment Files

We have created an XML file format (with the extension ‘.env’) that can be used
to specify 2D environments and multi-layered environments (MLEs). Such an
ENV file describes a set of layers. Each layer can contain walkable areas (polygons
on which characters can walk), obstacles (non-walkable polygons that overrule
walkable areas), and openings (walkable polygons that overrule obstacles). This
combination of elements makes the environment easy to define. An example is
shown in Figure 10.4.

To compute the ECM of a single layer, our software first computes the obstacle
space Eobs as (WAC ∪ OB) \ OP, where WA, OB, and OP respectively denote the
unions of all walkable areas, obstacles, and openings, and where WAC is the
complement of WA within a sufficiently large bounding box. We have implemented
this conversion by using the Boost library [14]. Next, Eobs is translated to a
representation required by the ECM construction algorithm of choice. Section 4.4
describes the various construction algorithms that we have implemented.
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Figure 10.4: In an ENV file, users can define the walkable space of a layer in terms of
walkable areas (light gray), obstacles (dark gray), and openings (yellow). The medial axis
of the resulting free space Efree is shown in blue.

An MLE can contain connections that connect the free space of two layers. In
an ENV file, a connection between two layers Li and Lj is specified once in Li
with a reference to the layer ID of Lj , and once in Lj with a reference to Li.

Furthermore, each layer can contain weighted regions: polygons with a certain
label (e.g. ‘grass’ or ‘road’) to which agents can associate a personal weight. As
explained in Section 10.3, the weighted regions are not included in the ECM; they
are treated as a separate ‘semantic layer’ and are represented using a different
data structure.

More specifically, we triangulate the weighted regions of each layer, as well as
their complement within the layer’s bounding box. The latter corresponds to the
areas for which no region has been specified; we assign the ‘default’ region label
to these areas. A layer without weighted regions therefore automatically receives
two triangles with the default type.

The personal weights associated to regions are stored in separate character
settings XML files that map region labels to numeric cost values. These settings
files also contain other character parameters such as the radius, the preferred
walking speed, and the methods and settings that the character uses for e.g. route
planning, route following, and collision avoidance. Each set of character settings
is called a character profile and is labelled with a name. Characters of different
profiles can coexist in a simulation.

10.4.2 Algorithms of the Planning Hierarchy

The framework from Section 10.3 is modular: each level can be handled using
various algorithms that can be combined arbirtarily. For the three center levels,
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we have implemented and integrated several algorithms, in such a way that
programmers can easily add new implementations.

For global planning, we have implemented A* search [45] on the medial axis.
Characters can use this to compute shortest paths on the medial axis while ignoring
edges that are too narrow for them to pass through. The resulting path can be
converted to various types of indicative routes, such as short paths with a preferred
amount of clearance, paths that follow the medial axis, or paths that stay on
the left or right side of the free space. We have discussed these algorithms in
Chapter 4. The re-planning algorithm from Chapter 8 and the density-based
planning algorithm from Chapter 9 are also included.

When the environment contains weighted regions, characters can perform A*
search on a grid that discretizes region information into cells of 1× 1 meter. An
improved path planning method for weighted regions has also been developed
[63], but it has not yet been integrated for crowds in which different characters
have different region preferences.

For route following, our framework includes both IRM [74] and MIRAN [62],
which we have described in Section 10.3. At the local movement level, we have
implemented two recent velocity-based collision avoidance algorithms by Moussaïd
et al. [105] and Karamouzas et al. [76]. We have also included the popular ORCA
collision-avoidance library [9]. The method by Moussaïd et al. is our default choice
because it has yielded the most convincing results in practical scenarios, but users
can easily switch between methods.

The Stream algorithm [36] is a method for local movement that can improve
the crowd flow in dense scenarios. In our implementation, it lies between route
following and collision avoidance: Stream updates the preferred velocity of a
character, so it changes the input of the collision-avoidance method that follows.

Finally, we have included the option to simulate social groups of characters.
The Social Groups and Navigation (SGN) method [87] applies partly to the local
movement level: it uses forces to maintain group coherence. It also affects
global planning: when a character loses track of the other members in its group,
the character re-plans its path. More information can be found in the original
publication of this method.

10.4.3 Simulation Loop

The main simulation loop of our software consists of fixed steps, or frames, that
simulate 0.1 seconds. Users of our API (Section 10.4.6) can decide at what
frequency this simulation loop is executed. For instance, calling the step function
10 times per second results in a real-time simulation, assuming that the work in
one frame can be performed within 100 ms. Alternatively, if the step function is
called as soon as the previous frame has finished, then the simulation runs as fast
as possible.
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Previous work has indicated that a step size of 0.1 seconds yields a simulation of
sufficient precision [74, 76]. A coarser step size may cause characters to ‘overshoot’
their goals or collide with other characters too often, whereas a finer step size does
not noticeably improve the precision.

We use a fixed step size to make the simulation deterministic. By contrast, in
e.g. visualization loops, one can easily lower the framerate whenever the individual
frames take too much time to compute. In our simulations, a variable step size
based on performance would mean that the behavior of characters becomes less
detailed when the simulation becomes computationally heavier. Therefore, we use
a fixed step size, accepting the fact that computationally expensive simulations
may not run in real-time.

We subdivide the content of a single simulation frame into multiple substeps that
are processed one by one. Examples of substeps include computing the retraction
of each character in the ECM (Section 4.3.2), computing a preferred velocity for
each character, computing new velocities that avoid local collisions, updating the
positions of all characters, and updating crowd density information in the ECM
edges (Chapter 9).

Sequentially handling the substeps instead of the characters ensures that all
characters use the same information. Instead, if the first character would perform
all of the actions mentioned above before the second character gets its turn,
different characters would be using different information, and the order in which
the characters are stored would affect the results.

We also treat dynamic updates in a separate substep. If the ECM could change
at any moment during a simulation frame, then the data used by characters
(e.g. references to ECM cells) could become inconsistent. Therefore, all dynamic
updates requested by the user are handled at a fixed point in the simulation loop,
such that we can ensure that any references to ECM-related data are immediately
updated.

10.4.4 Multithreading

Another advantage of our subdivision into substeps is that the computations
within a substep can be computed for multiple characters in parallel. After all,
the computations for one character do not depend on results computed for other
characters within the same substep. In other words, the calculations within a
substep are completely independent for the individual characters.

Thus, we can speed up the simulation by adding multithreading to each substep.
We have implemented this by using basic OpenMP instructions [115] to automati-
cally divide characters over multiple threads. Whenever a substep concerns social
groups rather than individual characters, we parallelize over the groups instead. In
Section 10.5, we will demonstrate how multithreading improves the performance
of the simulation.
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The only simulation substep in which the actions per character are not entirely
independent (i.e. not thread-safe) is the substep that updates the crowd densities
associated to ECM edges. To prevent characters from modifying the same density
value at the same time, we use OpenMP to define critical regions in the code.

10.4.5 Demo Projects

Our ECM software contains two interactive demo projects that use OpenGL to
visualize components such as the environment, the ECM, and the crowd.

The first demo project computes the ECM of an input environment. Users can
inspect the result, add and remove obstacles that influence the ECM (using the local
algorithms from Chapter 6 if desired), save the updated environment to a new ENV
file, save the ECM to a file, and test the visibility algorithms described in Section 4.3.
The second demo project can perform crowd simulations. Users can interactively
pause and resume the simulation, add or remove characters, change the goals and
personal properties of characters, and add or remove dynamic obstacles to affect
the ECM (Chapter 6) and the global paths of characters (Chapter 8).

In both demo projects, the visual content of the demo window can be exported
in vector format to the Ipe drawing tool [18] at any point in time. We have used
this functionality to produce many of the figures in this thesis.

10.4.6 API

We have created an API that provides basic entry functions for e.g. loading an
environment, computing or loading an ECM, intializing a simulation, adding a
character with a particular profile, removing a character, and running a single
simulation frame. This last API function fills an array of wrapper objects (C structs)
that contain the new positions and orientations of each character, and it returns a
pointer to this array. If an external program defines the exact same wrapper object,
both programs can use the same data.

We have used our API to connect our crowd simulation software to the Unity3D
game engine [158]. By linking characters in the simulation to animated 3D models
in Unity, we can visualize moving crowds in 3D in real-time. Figure 10.5 shows an
example of this combination.

The API is under active development and will be further improved in the future.
We also plan to create an API for environment modelling. This could for instance be
used by a visual editor to let users draw an environment in an intuitive way.

10.5 Experiments and Results

This section shows how our implementation performs in practice. In a number of
environments, we analyze the computation time required by the various substeps
of the simulation loop, both with and without using multithreading techniques.
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Figure 10.5: Example of a crowd simulation that uses our software in combination with
Unity3D. This simulation was created for the supplementary video of the Stream publication
[36]. A 2D version of this environment also occurred in Chapter 7.

We use these results to analyze how many characters can currently be simulated in
real-time. Our experiments use one CPU core and no parallel threads, except in
Section 10.5.3 where we analyze how multithreading can improve the efficiency.

10.5.1 Experiment Setup

We performed our experiment in various environments from Chapter 4 and Chap-
ter 5 of this thesis. In particular, we have included City (2D), BigCity (multi-
layered), and Zelda8x8 (2D) because they are large enough to support simulations
of very large crowds, i.e. they are good choices for measuring scalability.

Settings. At the beginning of the simulation, we added N characters with (uni-
formly sampled) random start and goal positions. We repeated the experiment
for various values of N . Whenever a character reached its goal, it received a new
random goal position.

As our ECM framework includes many different algorithms that can be com-
bined, there are many possible simulation settings. These settings are even allowed
to vary between characters; for example, characters can have individual sizes,
speeds, and collision-avoidance strategies. In this section, we give all characters
the same settings such that the running times per substep are easier to interpret.

In line with real-life measurements [160], we gave each character a radius
of 0.24 m and a preferred walking speed of 1.4 m/s. For global route planning,
characters used the ECM to compute short indicative routes with a preferred
clearance of 4 m. They used the density-based planning algorithm from Chapter 9
with a density weight w = 10, a viewing distance dD = 500, and a re-planning
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period of 10 seconds. For route following, characters used the Indicative Route
Method (IRM) [74] because it currently has a more robust implementation than
MIRAN. For local movement, they used vision-based collision avoidance [105]
as well as the Stream method for improved coordination. We have not included
any simulation components related to social groups [87] or dynamic updates
(Chapter 6), for simplicity.

We acknowledge that many more settings are possible, and that each change
in settings will lead to different behavior. However, the purpose of this experiment
is to analyze the overall performance and scalability of our framework; we do not
focus on behavior in this section. In future work, we intend to gain more insights
into the effects of low-level simulation settings.

Measurements. We measured the average running time (in milliseconds) of each
substep in the simulation, averaged over all frames. For example, we measured
the total time spent on collision avoidance (which is one of the substeps), and
we divided this by total number of frames that were simulated. We measure
each substep separately to get a better insight in which substeps are the most
computationally expensive.

The first seconds of the simulation are typically faster because characters are
intially still evenly spread throughout the environment. After some time, the
distribution of characters becomes more clustered, and more interesting challenges
for collision avoidance occur. Therefore, we let the program ‘warm up’ for 100
simulation seconds to get a better image of its efficiency. More precisely, we
performed our measurements between T = 100 s and T = 400 s, where T is the
total simulated time (in seconds) that has passed.

Note that we measure the performance of our simulation in terms of ‘millisec-
onds per frame’, and not in ‘frames per second’ or ‘CPU load’. We believe that
this is the best reflection of the simulation’s efficiency. Also, in real-time gaming
applications, it is likely that only a certain percentage of the overall processing
power can be allocated to crowd simulation. Performance results in milliseconds
are easier to interpret for such applications as well.

10.5.2 Results

We will discuss the results for the City enviroment in detail. At the end of this
section, we will briefly treat the other environments. For a visual impression,
Figure 10.6 shows a simulation of 15,000 characters in the City environment. We
will now focus on the performance of the software.

Figure 10.7 shows how the average running time of each substep scales with
the number of characters in the crowd. We have not included the performance of
the re-planning step yet; we will analyze this component in Section 10.5.4. Before
analyzing specific numbers, we will first discuss how each substep scales with the
size of the crowd.
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Figure 10.6: Still image of a crowd of 15,000 characters in the City environment. The
background colors denote the crowd densities as described in Chapter 9. The characters
have been enlarged for clarity; at their actual size, they do not intersect.

Figure 10.7a shows a close-up of the most efficient substeps. Most of these sub-
steps take around constant time per character: computing the character’s retraction
in the ECM, computing a new attraction point and a preferred velocity, applying
forces caused by (previously computed) collisions with other characters, updating
the character’s position, and updating ECM density information (Chapter 9) if the
character has moved to an ECM cell of a different ECM edge. These substeps are
independent of the other characters in the crowd, and their performance scales
roughly linearly with the size of the crowd.

Nearest-neighbor structure. The remaining substeps are related to neighbor
relations between characters and therefore take more time. Computing a kd-tree of
N points (i.e. the centroids of characters) takes O(N logN) time [7]. The Stream
method and collision-avoidance method both perform nearest-neighbor queries
in this kd-tree for each character. This takes around O(logN) time per character
because both methods search for a constant number of neighbors.
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In our original publication [151], we used a grid for nearest-neighbor queries
instead of a kd-tree. In crowded scenarios, many characters were located inside
the same grid cell, which caused the running time to scale quadratically with the
crowd size. Our new implementation based on kd-trees is much more scalable to
large crowds.

Collision avoidance. The substeps of the Stream method and the vision-based
collision-avoidance (CA) method take more time, as shown in Figure 10.7b. Our
original paper [151] did not yet include the Stream method. In this new analysis,
we can see that Stream is a more efficient substep than the CA method, despite
the fact that both methods perform nearest-neighbor queries. This indicates that
nearest-neighbor queries are not the main source of inefficiency of the CA method.

Instead, the main issue is the CA method’s use of sampling. The CA method
evaluates a number of candidate walking directions for a character; for each
candidate direction, it checks for potential future collisions with neighboring
characters. Eventually, the method chooses the best candidate direction according
to a cost function. The use of sampling adds a large constant factor to the running
time. This constant factor appears to annihilate the (theoretically) super-linear
trend of this substep, at least up to the crowd size that we have tested.

In the publication of this CA method, Moussaïd et al. [105] suggest to use
a ‘sufficiently large angular resolution’ for this sampling scheme, but they do
not propose a concrete value. In our implementation, the angle between two
subsequent samples is π

40 radians (4.5 degrees), following the suggestion of a
different CA method by Karamouzas and Overmars [76]. If we increase this
value to π

10 radians (18 degrees) for testing purposes, the CA substep becomes
considerably faster. We will refer to concrete running times in the next subsection.
As always, sampling imposes a trade-off between efficiency and precision. Because
it is currently unclear how the resolution affects the behavior of characters, we
continue to use π

40 radians as the default value.
An alternative collision-avoidance method, ORCA [9], is based on linear pro-

gramming rather than sampling. Preliminary experiments show that the ORCA
implementation is about as fast as the Stream substep. However, we have noticed
that ORCA does not yet combine well with our software in terms of character
behavior. The main reason is that ORCA handles static obstacles in a different way.
We intend to improve this in the near future. On the other hand, more research is
required to evaluate which method yields the most ‘human-like’ behavior.

Total time. Figure 10.7b also displays the running time of all substeps combined,
i.e. the average computation time of a complete frame. For example, simulating
20,000 characters took 547 ms per frame on average. Interpolation between our
measurements suggests that around 3,500 characters can be simulated in real-time.
However, note that we have used a single CPU thread in this experiment. We will
now analyze how multi-threading can improve these results.
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Figure 10.7: The performance of all simulation substeps in the City environment, using a
single CPU thread. The horizontal axis denotes the number of characters in the simulation.
The vertical axis denotes the average computation time of a substep (in milliseconds)
throughout the entire simulation. Thus, each column of data points corresponds to one
simulation run.
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10.5.3 Multithreading

Next, we have performed the same experiment with 8 parallel threads in each
substep. The running times are shown in Figure 10.8.

Figure 10.8a displays the same substeps as Figure 10.7a, and at the same scale.
Using 8 parallel threads leads to a speed-up factor of more than 4 for various
substeps, including the computation of retractions (from 85 to 19 ms at 100,000

characters) and path following (from 47 to 10 ms). Unfortunately, nanoflann [107]
cannot yet build a kd-tree on multiple parallel threads, and the corresponding
substep is now relatively expensive. In theory, a multi-threaded implementation of
this substep should be possible.

Figure 10.8b shows all substeps, with the y axis scaled by a factor of 4 compared
to Figure 10.7b. We obtain a speed-up factor of 5 for Stream (from 524 to 100

ms at 100,000 characters) and collision avoidance (from 2034 to 407 ms). In total,
simulating 100,000 characters becomes around 4.5 times as fast (from 2,761 to
602 ms per frame). We can now simulate slightly more than 15,000 characters in
real-time with collision avoidance (CA) and Stream included.

Again, improving the CA implementation can greatly improve the performance.
For instance, if we increase the CA sample size to π

10 radians as described earlier, the
CA substep takes 191 ms on average for 100,000 characters, and we can simulate
around 28,000 characters in real-time.

The substeps that support multi-threading do not become 8 times as fast because
the computations may not be equally fast for each character. Therefore, a thread
may have to ‘wait’ until a new character is assigned to it, depending on how the
threads are divided over the crowd. In future work, we intend to investigate more
advanced multi-threading settings related to the dynamic scheduling of threads.
Also, we intend to experiment with many more parallel threads on a machine with
more CPU cores. For now, we have shown that simple multi-threading commands
can already greatly improve the efficiency.

Given the rise of multi-core computers in recent years, we expect that simu-
lations will be able to use many more parallel threads in the near future. In that
respect, constructing the nearest-neighbor data structure on a single thread will
eventually become the most expensive task. Thus, constructing this data structure
in a parallel way will become a necessary improvement.

10.5.4 Analysis of Real-Time Performance

Because our software simulates discrete frames of 0.1 s, the simulation runs in real-
time if the computations in each frame take at most 100 milliseconds. Of course,
this assumes that there are no other components that also require processing power,
such as visualization. Assuming that the simulation runs only ‘in memory’ without
visualization or user interaction, we can analyze how many characters can be
simulated in real-time. (For applications that can only spend a maximum amount
of time per second on crowd simulation, a similar analysis can be conducted.)
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Figure 10.8: The performance of all simulation substeps in the City environment, using 8
parallel CPU threads. The data representation in this figure is the same as in Figure 10.7.
The label ‘Faster’ refers to experiments with a lower sampling frequency in the collision-
avoidance method.
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With 8 parallel threads, we can simulate the movement of 10,000 characters in
the City environment in around 59 ms per frame (as shown in Figure 10.8b). This
means that there are 41 ms left for other tasks such as re-planning. In Section 4.5.2,
we have shown that indicative routes in the City environment can be computed
in 0.3 ms on average. Furthermore, Section 9.6.5 has shown that even the most
complex indicative routes have an average computation time of less than 1.5 ms.
Assume for simplicity that planning an arbitrary indicative route takes 1 ms. This
implies that around 40 characters can re-plan their paths in a single simulation
frame. If the re-planning queries of all 10,000 characters are divided over time,
then each character can plan a new path every 25 seconds without losing real-time
performance. Of course, these results are different for other environments because
the performance of path planning depends heavily on the complexity of the ECM.

Other environments. Finally, Figure 10.9 compares the total average frame times
for City to those for the BigCity and Zelda8x8 environments, again using 8 parallel
threads. In all three environments, the performance scales roughly linearly with
the number of characters due to the sampling-based collision-avoidance substep.
We have tested smaller environments as well, such as Military and Zelda from
Chapter 4 and Station from Chapter 5, but these were not large enough to support
as many characters as the other environments.

��

���

����

����

����

����

����

����

�� �� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
	


��
�
�
�
�
��
��

�
��
��
�
��
�
��
��
�
�
�
��
�
��

�����������������������������

 ��!

"�#$�%�%

&�
 ��!

Figure 10.9: The average computation time per frame (in milliseconds) for various large
environments from this thesis, using 8 parallel threads.

In conclusion, our software can currently simulate large crowds (over 10,000

characters) in real-time, and the majority of the computation time is spent on a
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collision-avoidance method that can still be optimized. We emphasize that the
program can simulate larger crowds as well, but not yet at real-time rates.

10.5.5 Real-World Simulations

Finally, we highlight a number of examples of how the framework has been used
in practice to simulate real-world events.

The company Movares [106] has used our API for various simulations of real-
life scenarios, such as virtual evacuations of the Noord-Zuidlijn metro stations
in Amsterdam, and crowd flow simulations for the Grand Départ of the Tour de
France in the city of Utrecht (2015). An impression of the latter project is shown
in Figure 10.10.

The Pedestrian Dynamics crowd analysis software [60] has used the ECM
framework in a similar way for multiple applications, such as crowd predictions
for the King’s Day ceremonies in Amsterdam (2014).

Figure 10.10: Our software has been used as a Unity plugin to simulate flows of spectators
for the 2015 Tour de France Grand Départ in Utrecht. Simulations were performed using
various lay-outs of fences to analyze which lay-out yielded the best and safest crowd flow.

10.6 Conclusions and Future Work

In this chapter, we have explained that a crowd simulation system involves many
different types of algorithms. We have suggested a generic framework for crowd
simulation that consists of five hierarchical levels: high-level planning, global
route planning, route following, local movement, and animation. We have given
examples of related work in each area.

Next, we have described the implementation of our crowd simulation software
that uses the Explicit Corridor Map (ECM) navigation mesh. This software simu-
lates the three center levels of the generic framework: it implements or integrates
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various algorithms for route planning, route following, and local movement in a
modular and extensible way. The program uses a carefully designed simulation
loop and multi-threading techniques to obtain robust, deterministic, and efficient
simulations. Our ECM software can be combined with other programs such as
game engines.

Experiments show that our ECM framework can simulate large crowds in
real-time using fixed frames that simulate 0.1 seconds. Collision avoidance is by
far the most expensive component of the simulation; improving this algorithm
and its implementation can greatly improve the results. On a consumer PC, we
can currently simulate over 15,000 characters in less than 0.1 s per frame in the
City environment, excluding global route planning and re-planning. For smaller
crowds, we have analyzed how many (re-)planning queries can be performed
without losing real-time performance. Because the software benefits from multi-
threading techniques, it is well-prepared for faster performance on (future) multi-
core computers. We have also shown examples of how the industry has used our
software to successfully simulate real-world events.

Discussion. In our current implementation, simulations tend to have minor
problems in multi-layered environments (MLEs), particularly with respect to
collision avoidance between characters. Characters cannot always recognize
neighboring characters in other layers. We have yet to develop robust and efficient
data structures and algorithms for nearest-neighbor queries in MLEs, such that
collision avoidance in MLEs can work exactly as in 2D.

Another limitation of our simulations is that the local behavior of characters de-
pends largely on their choice of indicative routes. For instance, if many characters
try to follow short indicative routes that pass closely along corners of obstacles,
then clusters of characters may form at these obstacle corners, and characters can
get stuck. Local algorithms such as the Stream method can improve the crowd flow
in some scenarios, but there is not one combination of algorithms and settings
that always works well. To prevent such problems, characters should be willing to
deviate farther from their indicative routes.

A related problem is that local and global planning are still largely detached
in our implementation. In theory, our generic crowd simulation framework en-
courages communication from lower to higher levels; in practice, it is difficult to
decide when this communication should take place. For example, if a cluster of
characters is largely blocking the way for another character, it is unclear how ‘bad’
the situation should be to trigger a re-planning action.

Future work. The simulation companies that have used our software [60, 106]
have shown that our implementation can be combined with methods for high-level
planning. We would like to investigate more sophisticated AI techniques that can
also efficiently model the individual knowledge and memory of characters. As
explained in Chapters 8 and 9, this is particularly useful for environments with
changing conditions such as dynamic obstacles or densities.
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The discussion points mentioned earlier encourage future research on when
and how the levels of our planning hierarchy should communicate in practice. The
concept of strictly following an indicative route may be too limited to allow flexible
behavior. Eventually, it might be that path following and collision avoidance make
more sense as a single process in which all factors (e.g. the desired route, other
characters, and weighted regions) are weighed in at once. Section 12.2 will discuss
future work on the geometric planning levels in more detail.

Finally, the experiments of this chapter have focused on efficiency only. We have
not yet analyzed the behavior or ‘realism’ of the simulated crowds. One reason for
this is that the behavior of characters depends on many simulation settings; our
software supports many combinations of algorithms, as well as detailed settings
within each algorithm. Another reason is that it is largely unclear how the realism
of a simulation can be measured in practice. In Chapter 12, we will argue that this
is one of the most crucial topics for future work in our research field.



PART IV

Concluding Remarks
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11 Summary and
Conclusions

In a crowd simulation, virtual walking characters need to compute and traverse
paths through a virtual environment while avoiding collisions. Simulations of
large crowds occur increasingly often in computer games, in which real-time
performance is required. Also, there is an increasing demand for crowd simulations
of real-world scenarios. For example, crowd simulations can be used to predict
dangerous situations during crowded events such as festivals, to estimate if a
sports stadium can be evacuated within a certain amount of time, or to teach
public safety personnel how to control crowds using a safe learning environment.

Thus, path planning and crowd simulation are important research topics. In Part I
of this thesis, we have given an overview of these topics and related work. We
have explained that a navigation mesh is an efficient representation of a virtual
environment for the purpose of real-time path planning and crowd simulation.
When planning a path in a navigation mesh, we actually compute a sequence of
regions for the character to move through. Within these regions, the character can
compute an indicative route, which it can then follow in real-time while avoiding
other moving characters.

The rest of this thesis has investigated how to use navigation meshes to model
and simulate complex scenarios. Examples of complex factors include characters
with individual sizes and properties, multi-layered environments embedded in
3D, dynamic environments in which obstacles (dis)appear during the simulation,
paths that need to be re-planned in real-time, or dense crowds in which characters
should make intelligent decisions.

11.1 Navigation Meshes

Part II of this thesis revolved around navigation meshes: data structures that
represent a virtual environment for path planning and crowd simulation.

In Chapter 4, we have presented the Explicit Corridor Map (ECM) navigation mesh
for 2D environments with polygonal obstacles. The ECM is the medial axis of the
free space Efree, annotated with nearest-obstacle information at its bending points.
For an environment with n obstacle vertices, the ECM requires O(n) storage and
can be computed in O(n log n) time based on any construction algorithm for the
Voronoi diagram or the medial axis.
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Because the ECM is a sparse graph, it is typically a more efficient representa-
tion of Efree than e.g. a grid. This enables more efficient path planning queries.
Furthermore, the ECM allows for efficient fundamental operations such as point
location, computing retractions [110], finding the nearest obstacle, and computing
visibility information.

To compute a path for a character, we first find a path along the medial axis,
which can then be converted to various types of indicative routes for the character
to follow. Due to its clearance information, the ECM can be used to plan paths
for disk-shaped characters of any radius. As such, the ECM is a navigation mesh
that enables efficient path planning and simulation of heterogeneous crowds, i.e.
crowds in which each character has its own properties and goals.

We have implemented the ECM based on robust software libraries for comput-
ing Voronoi diagrams. Our experiments show that the ECM can be constructed
efficiently, and that it can be used to compute visibility polygons and indicative
routes in real-time.

In many modern applications, the virtual environment is more complex and cannot
be represented in 2D. For instance, imagine a multi-story building or a city with
bridges and tunnels. However, the original 3D geometry is typically too detailed
for the purpose of navigation.

In Chapter 5, we have defined a walkable environment (WE) as a set of
polygons in R3 on which characters can walk, assuming a consistent direction
of gravity ~g and a corresponding (virtual) ground plane P . Such a WE can be
obtained from a raw 3D environment through a filtering process. Next, a multi-
layered environment (MLE) is a WE that has been subdivided into layers such that
any layer can be projected onto P without overlap. The layers are connected by
connections: line segments whose vertices lie on the boundary of Efree.

We have defined the medial axis (and therefore the ECM) for WEs and MLEs
based on distances projected onto the ground plane P . To construct the medial
axis of an MLE, we first compute the medial axis of all separate layers, while
treating all connections as impassable obstacles. Next, we open the connections
one by one. Opening a connection is analogous to deleting a line segment site from
a Voronoi diagram, but with extra difficulties due to the multi-layered structure
of the environment. For an MLE with n obstacle vertices and k connections, the
medial axis has size O(n) and can be constructed in O(n log n log k) time. We
expect that this construction time can be improved to O(n log n) in the future.

By using multi-threading techniques, our implementation can construct the
ECM in less than a second for moderately large MLEs, and within seconds for the
most complex MLE in our test set. Because the multi-layered ECM locally has the
same properties as the 2D ECM, many operations from Chapter 4 (including path
planning and visibility queries) apply immediately to the multi-layered extension.
The domain of MLEs presents interesting new problems, and we expect that other
data structures for 2D environments can be extended to MLEs as well.
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Chapter 6 investigated dynamic environments in which obstacles can appear or
disappear during the simulation. For example, imagine a vehicle blocking a street,
a bridge being destroyed, or a fence being added or removed. When such a
dynamic event occurs, the navigation mesh should be updated, preferably in an
efficient manner such that characters can respond to the event in real-time.

We have shown how the ECM can be updated locally when a convex polygonal
obstacle is added or removed. These update operations are based on algorithms
for inserting and deleting sites in a Voronoi diagram. In an environment of
complexity n, a convex polygon of n′ vertices can be inserted in O(log n+n′+mi)

time, where mi ∈ O(n) is the number of ECM cells that are visited during the
insertion algorithm. A polygon can be deleted in O(log n+md logmd) time, where
md ∈ O(n) is the number of ECM cells around the obstacle to delete. In many
cases, the obstacle only affects a small part of the ECM, and mi and md are small
numbers.

Our implementation and experiments show that we can update the ECM within
milliseconds. This enables path planning and crowd simulation in dynamic 2D
and multi-layered environments. However, the algorithms do not extend trivially
to obstacles that intersect other geometry, and deleting an obstacle from a multi-
layered environment may induce cases for which our current 2D algorithm does
not work. We have sketched alternative approaches for future work.

Next to the ECM, various other types of navigation meshes have been developed
by researchers worldwide over the past decade. So far, there has not yet been a
standardized way of analyzing or comparing the quality of different navigation
meshes. In Chapter 7, we have conducted the first comparative study of navigation
meshes. We have presented definitions of environments and navigation meshes, as
well as theoretical properties by which navigation meshes can be classified. Next,
we have introduced various quantitative metrics that can measure the quality of a
navigation mesh implementation: how accurately does it represent the free space
Efree, how efficient is its subdivision into regions, and how efficiently can it be
constructed? Different application areas may assign different priorities to these
metrics. Therefore, it is up to the user to decide which properties are the most
relevant to the application at hand.

We have used these concepts to analyze and compare five state-of-the-art
navigation meshes, along with a simple grid as a baseline. In our experiments,
we have run all navigation mesh construction programs using the same hardware,
input environments, and parameter settings. We believe that this work sets a new
standard for the analysis and development of navigation meshes.

Our results confirm that navigation meshes are generally more efficient repre-
sentations of Efree than grids. Voxel-based methods (which use approximations to
obtain a walkable environment from raw 3D geometry) yield sufficient precision
in many cases. However, these methods do not always preserve the environment’s
connectivity, they do not always scale well to large or complex environments,
and they may depend on many parameter settings that need to be tweaked by
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the user. By contrast, exact methods do not have these issues, but they currently
require the environment to be pre-processed into 2D layers. A topic for future work
therefore lies in robustly extracting Efree from 3D input without the disadvantages
of voxel-based methods. Also, more metrics can still be developed, particularly in
the areas of path planning efficiency, path length, and realism.

11.2 Path Planning and Crowd Simulation Algo-
rithms

In Part III of this thesis, we have developed new algorithms for path planning and
crowd simulation in navigation meshes. Although we have used the ECM from
Part II as a guideline, we have described all concepts generically to make them
applicable to other navigation meshes as well.

Chapter 8 considered re-planning in dynamic environments. When a dynamic
obstacle has been added or removed (as described in Chapter 6), characters should
check if their current paths are still valid and (if desired) optimal in the updated
navigation mesh. When planning a new path, it is likely that information from the
old path can be re-used to improve efficiency. Many existing re-planning algorithms
require that each character remembers the search state from its previous query.
This is too memory-intensive for applications with large crowds of characters.

We have presented Optimal Dynamically Pruned A* (ODPA*), an extension of
A* that prunes the search based on the old path and its relation to the dynamic
event. Characters only need to remember their old paths and not the way in which
these path were computed, which makes ODPA* suitable for crowd simulation.

Our experiments show that standard A* is faster in small graphs, but that
ODPA* can outperform A* if the path is long and large parts can be re-used, such
as in large and complex environments. Thus, ODPA* is an intuitive extension
of A* that can improve the performance of real-time crowd simulations in large
dynamic environments. Future challenges lie in handling multiple dynamic events
in a single re-planning query, and in giving characters a sophisticated individual
‘memory model’ of the environment and its dynamic events.

It is common to let characters compute short paths through a navigation mesh.
However, if a simulation contains many characters and the crowd density increases,
this strategy may cause some areas to become overcrowded while other areas
remain unused. In Chapter 9, we have shown how to annotate a navigation mesh
with crowd density information that can be updated in real-time. The density in
a navigation mesh region can be mapped to an expected walking speed in that
region, using the theory of fundamental diagrams (empirically observed mappings
from crowd density values to typical walking speeds).

Based on this density-annotated navigation mesh, we have presented a density-
based path planning algorithm with which a character can plan a density-aware
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path to its goal. Each character can use its own personal sensitivity to density-
based delay. By regularly re-planning their paths, characters can respond to the
most recent changes in density. If desired, re-planning can be made more efficient
by letting characters only use density information up to a maximum path length.

Our experiments in the ECM show that density-based path planning per charac-
ter, combined with periodic re-planning, can lead to emergent behavior in which the
crowd automatically spreads among multiple routes. This can prevent characters
from getting stuck in high-density regions; it can simulate dense crowd flows that
were previously not possible. However, our algorithm is only one component in a
larger system: the exact behavior of a crowd depends on many other simulation
settings and implementation details. Furthermore, it is largely unclear how to
evaluate the ‘realism’ of a crowd simulation in general.

In Chapter 10, we have suggested a hierarchical model for crowd simulations
in general. The model consists of five levels: high-level planning, global route
planning, route following, local movement, and animation.

Our ECM-based crowd simulation software models the three center levels,
which concern the geometric aspects of path planning. We have implemented many
different algorithms for route planning, route following, and local movement;
these implementations can be freely combined in a modular way. By using multi-
threading techniques and a careful subdivision of a simulation step into substeps,
the software can simulate tens of thousands of characters in real-time.

The ECM software has been used throughout many chapters of this thesis.
It has also been used successfully for real-time simulations of large crowds in
real-world scenarios, e.g. to predict the crowd flow during the Grand Départ of
the Tour de France in Utrecht in 2015, and to perform virtual evacuations of the
Noord-Zuidlijn metro stations in Amsterdam.

Important topics for future work include analyzing the realism of a simulation,
analyzing the global effects of low-level parameters, and making characters more
intelligent without significantly harming the overall efficiency.
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12 Discussion and Future
Work

In this chapter, we highlight a number of important topics for future research,
based on the results and limitations of our work up until now.

12.1 Navigation Meshes

We first look at topics related to Part II of this thesis.

12.1.1 Obtaining Walkable Environments

In Chapters 5 and 7, we have used the concepts of walkable environments (WEs)
and multi-layered environments (MLEs) to represent the free space Efree of a 3D
environment. In this thesis, we used WEs and MLEs as input, and we considered
the problem of automatically obtaining them to be beyond the scope of the thesis.

To extract Efree from raw 3D geometry, voxel-based algorithms are currently the
solution of choice. However, we have shown in Chapter 7 that such algorithms may
lead to imprecise representations of Efree, that they are often based on unintuitive
parameters, and that they do not scale well to large environments.

We are therefore interested in developing exact algorithms for obtaining WEs
from 3D geometry. Recent results are promising and numerically robust [123],
but we have not yet achieved a real-time implementation that can compete with
voxel-based algorithms in terms of efficiency. In the end, hybrid techniques may
turn out to yield the best results. An example is NEOGEN [114] which uses voxels
to obtain a raw subdivision into layers, followed by a higher-precision geometry
reconstruction step per layer.

12.1.2 Obtaining and Using Multi-Layered Environments

A multi-layered environment (MLE) represents a walkable environment as a set
of layers such that each layer can be handled in 2D. Both our own ECM and the
NEOGEN navigation mesh [114] use this concept in their construction algorithm.

We expect that other path planning data structures and algorithms that are
currently defined in 2D can also be extended to MLEs, based on the same projected
distance function that we introduced for the medial axis. Examples of such data
structures include the visibility graph [35], the constrained Delaunay triangulation,
and the Local Clearance Triangulation [67]. A multi-layered version of the visibility
graph could be used to plan shortest paths in multi-layered environments.
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If a 2D construction algorithm assumes that Efree has been subdivided into
polygonal regions, and it only uses these regions and their adjacency information,
then it is likely that such an algorithm can be extended trivially to MLEs without
affecting the running time. In Section 5.9, we have shown that this holds for
computing indicative routes and visibility polygons.

Alternatively, if an algorithm is currently based on a 2D plane (using e.g.
a plane sweep, incremental construction, or divide-and-conquer), it can most
likely be extended to MLEs by treating all layers separately and then opening the
connections one by one, such as in Chapter 5. In such cases, the running time of
the algorithm may not be the same as in 2D. Important factors for the running
time of the algorithm include the number of connections, as well as the complexity
of the environment in the neighborhood of these connections.

It is therefore important to obtain MLEs with a convenient configuration of
connections (although the definition of ‘convenient’ may differ per application).
Hillebrand [54, 55] has shown that obtaining a minimal number of connections is
NP-hard, but that heuristics can yield a small number of connections in practice.
We are interested in developing fast algorithms for converting WEs to convenient
MLEs based on other criteria, such as the width of connections or the distribution
of connections throughout the environment.

Finally, we have seen that MLEs impose a number of extra difficulties in crowd
simulations. In particular, dynamic deletions of obstacles do not always work
in MLEs because theoretically difficult cases can occur, and collision avoidance
between characters becomes less efficient due to more complex nearest-neighbor
queries. We would like to perform a more thorough analysis of MLEs and their
impact on the performance of a simulation.

12.1.3 Dynamic Environments and Robustness

In the near future, we expect that it will become more important to simulate
dynamic environments that can change in arbitrary ways. We have shown that
our algorithms from Chapter 6 are efficient, and we have explained how they
can theoretically be extended to non-convex obstacles and intersecting geometry.
However, it will be challenging to obtain a robust implementation that can handle
all possible situations. This is particularly relevant for interactive applications
in which the dynamic events are caused by the user and cannot be predicted
beforehand. An example is a computer game in which the player can change the
environment to create new routes in unpredictable ways.

Alternative techniques for updating the ECM include recomputing it from
scratch in a parallel thread, or recomputing it only within a cleverly chosen
bounding box. These techniques will most likely be less efficient than the purely
local algorithms from Chapter 6, but they will be easier to implement robustly for
intersecting geometry and multi-layered environments.
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We would also like to investigate other types of dynamic geometry, such
as elevators or moving platforms that are connected to different parts of the
environment at different points in time.

12.2 Path Planning and Crowd Simulation Algo-
rithms

Next, we discuss topics for future work that are related to Part III of this thesis.

12.2.1 Geometric Planning Levels

The crowd simulation framework described in Chapter 10 dinstinguishes between
three levels of geometric planning: route planning, route following, and local
movement. The underlying assumption is that the indicative routes are ‘intelligent’
enough to be traversable in combination with local collision avoidance. However,
local methods may not be able to steer a character towards its goal if too many
other characters are blocking the way. When this happens, the character should
look for a different indicative route to follow.

Also, the distinction between global and local planning is not always evident.
For instance, small obstacles such as street lanterns could be modelled as ‘hard’
obstacles in the navigation mesh that influence the high-level route choices of
characters, but they could also be integrated into a local collision-avoidance
method instead. Similarly, a dense cluster of characters could be inserted into
the navigation mesh as a dynamic obstacle. Different choices lead to different
behavior in the crowd.

A more specific potential problem of our current model is that characters always try
to move towards an attraction point on the indicative route. Therefore, the crowd’s
behavior depends heavily on the type of indicative route that each individual
character tries to follow.

We would like to investigate a more flexible approach. One option is to let
characters also consider points to the left or right of the route at the path following
level. Another idea is to not use precomputed indicative routes at all, but to choose
attraction points on the fly by using the navigation mesh regions. Such approaches
would also allow characters to locally navigate around dense areas or unattractive
weighted regions. It might mean that path following and collision avoidance will
eventually be merged into a single process.

12.2.2 Character Intelligence and Memory

In Chapters 8 and 9, we have discussed re-planning in environments with dynami-
cally changing conditions (i.e. dynamic obstacles or changing densities). In both
cases, a character’s knowledge of the environment was modelled in a limited way.
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If all characters use the same version of the navigation mesh, they always know
about all dynamic events and the latest changes in density information.

A more realistic approach would be to let each character have its own knowledge
model that encodes what the character currently knows about the environment.
Ideally, each character should use its own version of the navigation mesh annotated
with that character’s personal information. Of course, this would significantly
increase the memory usage of the simulation; as such, it would not be scalable to
large crowds. It will be challenging to model detailed knowledge per character
while still allowing tens of thousands of characters to be simulated.

In general, this thesis has used a simplified character representation to allow
simulations of large crowds in real-time. As we add more knowledge to the crowd,
each character gradually evolves from a moving disk into a complex artificial
intelligence (AI) agent. Combining our algorithms with results from AI research
will undoubtedly affect the computational efficiency of the simulation, but it can
yield sophisticated models of characters that display more realistic behavior.

12.2.3 Validating Crowd Simulations

Next, validating the results of a crowd simulation is possibly the most important
topic for future work. Crowd simulations are being used increasingly often in
preparation of real-world events; Wijermans et al. [163] have given a rigorous
overview of the field of crowd management and the ways in which this field can
benefit from crowd simulations. However, it is still largely unclear to what extent
the results of a crowd simulation correspond to real-world behavior. Thus, there is
an increasing desire to measure this correspondence.

At a microscropic level, benchmark tools such as SteerBench [135] use various
metrics to measure the quality of character behavior. Some of these metrics are
based on logical ideas (e.g. ‘pedestrians want to minimize the energy that they
spend’), but it is not yet clear if the resulting numbers actually represent how well
the simulation reflects real-world behavior.

Algorithms for local character behavior are often based on psychological con-
cepts [46, 58, 105], and they often result in emergent crowd-wide behaviors that
are also observed in real life (such as lane formation and stop-and-go waves).
The ability to model such emergent phenomena is considered to be a desirable
property [27, 46]. However, each model may still produce deadlocks or other un-
desired effects in particular scenarios; there is not a single model that guarantees
appropriate behavior in all possible cases.

One could compare the trajectory of a simulated character to a path traversed
in real life, but such a comparison would be highly scenario-specific. Another
option is to detect and compare high-level patterns in sets of trajectories [159].
Also, as explained in Chapter 9, fundamental diagrams (i.e. empirically studied
relations between crowd density and typical walking speeds) can be used to
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compare simulations to real crowds at a macroscopic level [130, 167]. This idea
has already been employed by researchers and developers of crowd simulation
software [11]. However, fundamental diagrams are currently only well-studied for
limited scenarios such as straight corridors and T-junctions [167], and the analysis
depends heavily on the way in which crowd density is measured [167, 168].

We also stress that the output of a crowd simulation depends heavily on low-
level parameters and implementation details. Our comparative study of navigation
meshes (Chapter 7) was already influenced by such details, as well as by conceptual
differences between algorithms. Simulations depend on even more of these factors,
so analyzing and comparing their results will be even more challenging. It will be
difficult to draw general conclusions on whether or not a particular simulation
model produces realistic results.

12.3 Other Topics and Outlook

Of course, more directions for future research exist that reach further beyond
the scope of this thesis. For instance, it would be interesting to combine walking
characters with other simulated vehicles such as bicycles. Path planning under
the non-holonomic constraints of vehicles has been studied intensively, as well as
the various written and unwritten traffic rules that are involved when multiple
vehicles are present. However, there is not yet one system in which many entities
of different types interact realistically in real-time.

Also, this thesis has deliberately focused on characters that move along walkable
surfaces. Some applications may feature AI-controlled characters that can perform
more complex actions such as jumping, climbing, and crouching. These complex
actions are tightly coupled with the field of 3D character animation; in other words,
characters can no longer be simplified to disks with velocities.

For instance, jumping behavior can be included by annotating a navigation
mesh semi-automatically [16], based on application-specific assumptions such as
a maximum jump height or a fixed character shape. Other approaches use more
traditional motion planning techniques for each individual character [98], but
these techniques are too complex to be suitable for large crowds. A large future
challenge is to automatically create data structures that can answer navigation-
related queries in real-time for crowds of characters that can perform many actions.
Any solution will undoubtedly include trade-offs between the overall performance
and the amount of detail per character.

Eventually, the ideal hypothetical solution should be able to perform real-time
simulations of many intelligent virtual characters that can perform complex tasks,
combined with other entities such as vehicles, in large detailed environments that
can change in unpredictable ways. Furthermore, the results of these simulations
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should be provably realistic; they should reflect behavior observed in real life.
To achieve such a goal, researchers will have to combine the expertise of many
different communities.

Given the range of possible directions for future research, as well as the
increasing relevance of simulations to society, we expect that crowd simulation
and its related topics will remain important research areas for many decades.
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Samenvatting

Een crowdsimulatie is een computerprogramma dat het gedrag van een menigte
lopende mensen (karakters) simuleert. Zulke simulaties komen voor in computer-
games, waarin het gedrag van de karakters in real-time moet worden uitgerekend.
Crowdsimulaties worden ook steeds belangrijker voor situaties in het echte leven:
een simulatie kan bijvoorbeeld de drukte en veiligheid op een festival voorspellen,
berekenen hoe snel een stadion geëvacueerd kan worden, of politiepersoneel
opleiden om met grote menigtes om te gaan.

In dit proefschrift hebben we technieken bekeken die crowdsimulaties kunnen
verbeteren. In deel I hebben we uitgelegd dat een navigation mesh de virtuele
omgeving opdeelt in verbonden beloopbare vlakken, zodanig dat karakters er
efficiënt routes mee kunnen uitrekenen naar hun individuele doellocaties. Elk
karakter volgt in de simulatie een eigen route terwijl het obstakels en andere
(bewegende) karakters in real-time ontwijkt.

In de rest van het proefschrift hebben we onderzocht hoe we navigation
meshes kunnen uitbreiden en inzetten voor complexe scenario’s, zoals gelaagde
omgevingen in 3D, omgevingen die dynamisch veranderen, of drukke menigtes
waarin karakters intelligente keuzes moeten maken.

Navigation Meshes

Deel II van het proefschrift draaide om navigation meshes.

In hoofdstuk 4 hebben we de Explicit Corridor Map (ECM) beschreven, een
navigation mesh gebaseerd op de medial axis (MA) en gerelateerd aan het Voronoi-
diagram. Voor een 2D-omgeving met polygonale obstakels, met in totaal n ob-
stakelpunten, heeft de ECM complexiteit O(n) en kan deze berekend worden in
O(n log n) tijd.

De ECM ondersteunt veel handelingen die nuttig zijn voor crowdsimulaties,
waaronder het vinden van het dichtstbijzijnde obstakel voor een query-punt, het be-
rekenen van zichtbaarheidsinformatie (‘visibility polygons’), en het berekenen van
routes voor cirkelvormige karakters van willekeurige grootte. Onze implementatie
van de ECM kan deze operaties in real-time uitvoeren.

In hoofdstuk 5 hebben we gelaagde omgevingen (‘multi-layered environments’)
gepresenteerd. Een beloopbare omgeving is een verzameling beloopbare vlakken
in 3D. Een gelaagde omgeving deelt zo’n omgeving op in lagen zodanig dat elke
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laag in 2D gevisualiseerd kan worden. De lagen zijn verbonden via connecties: de
lijnsegmenten waarlangs de beloopbare omgeving is opgesplitst. Een gelaagde
omgeving is een nuttige vereenvoudiging van een 3D-omgeving voor padplanning
en crowdsimulatie.

We hebben de MA (en daarmee de ECM) gedefinieerd voor gelaagde omge-
vingen, gebaseerd op geprojecteerde afstanden op het grondvlak. We hebben
een algoritme beschreven dat de MA berekent door eerst alle connecties als ge-
sloten obstakels te beschouwen en ze daarna één voor één te openen. Voor een
gelaagde omgeving met k connecties en n obstakelpunten is de MA O(n) groot.
Het constructie-algoritme kost O(n log n log k) tijd; deze looptijd kan mogelijk nog
versneld worden tot O(n log n).

Onze implementatie van dit algoritme kan de ECM snel uitrekenen, ook voor
grote complexe omgevingen. Bovendien werken de meeste operaties uit hoofdstuk
4 automatisch ook in gelaagde omgevingen.

Dynamische omgevingen kunnen veranderen tijdens de simulatie, bijvoorbeeld
als een voertuig een doorgang blokkeert of als een explosie een nieuwe route
beschikbaar maakt. Dit heeft invloed op de paden die karakters kunnen volgen;
daarom moet de navigation mesh worden bijgewerkt. In hoofdstuk 6 hebben
we algoritmen beschreven die de ECM efficiënt en lokaal bijwerken wanneer een
obstakel dynamisch wordt toegevoegd of verwijderd. Onze implementatie kan
deze dynamische updates uitvoeren binnen enkele millseconden.

Naast de ECM zijn in het afgelopen decennium meer navigation meshes ontwikkeld.
Er bestond nog geen manier om de kwaliteit van navigation meshes te beoordelen
of te vergelijken. In hoofdstuk 7 hebben we de eerste vergelijkende studie van
navigation meshes uitgevoerd.

We hebben theoretische eigenschappen beschreven waarmee we types naviga-
tion meshes kunnen classificeren, en metrieken die de kwaliteit van een mesh voor
een bepaalde omgeving kunnen uitdrukken. Deze eigenschappen en metrieken
vormen een nieuwe standaard voor (experimenteel) onderzoek op het gebied van
navigation meshes.

Met deze componenten hebben we een theoretische en praktische vergelijking
uitgevoerd van een aantal moderne navigation meshes. Een conclusie is dat
benaderende algoritmen soms informatie verliezen en minder goed opschalen naar
grotere omgevingen, maar dat exacte algoritmen voorbewerkte input verwachten
en nog niet kunnen omgaan met willekeurige 3D-geometrie.

Algoritmen voor Padplanning en Crowdsimulatie

Deel III van dit proefschrift richtte zich op speciale algoritmen voor het berekenen
van routes en het simuleren van menigtes.
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In hoofdstuk 8 hebben we padplanning in dynamische omgevingen bestudeerd.
Nadat een obstakel is toegevoegd of verwijderd en de navigation mesh is aangepast,
zoals beschreven in hoofdstuk 6, is de route van een karakter mogelijk ongeldig
of niet meer optimaal. We hebben een algoritme ontwikkeld dat een pad in een
navigation mesh efficiënt kan herplannen nadat een obstakel is toegevoegd of
verwijderd. Dit algoritme, genaamd Optimal Dynamically Pruned A* (ODPA*),
maakt gebruik van het oude pad en de relatie tussen dat pad en de dynamische
verandering. ODPA* voegt een aantal ‘pruning’-regels toe aan het standaard A*-
zoekalgoritme om het zoeken te versnellen in de context van herplanning. Omdat
ODPA* geen extra geheugen gebruikt gedurende de simulatie, is het algoritme
geschikt voor simulaties van grote menigtes.

Onze experimenten laten zien dat het standaard A*-algoritme sneller is in
kleine omgevingen, maar dat ODPA* voor versnellingen kan zorgen bij lange com-
plexe paden waarvan een groot deel kan worden hergebruikt. Het algoritme kan
dus zorgen voor snellere simulaties van grote menigtes in complexe dynamische
omgevingen.

In een navigation mesh is het gebruikelijk om karakters een korte route naar hun
doel te laten berekenen. Bij grote menigtes kan dit leiden tot opstoppingen in
gebieden die veel karakters tegelijk willen gebruiken, terwijl andere gebieden
onbenut blijven. In hoofdstuk 9 hebben we bestudeerd hoe karakters de dichtheid
van de mensenmassa kunnen gebruiken bij het vinden van routes.

We annoteren een navigation mesh met de huidige dichtheid in elk gebied. De
dichtheid in een gebied kan worden vertaald naar een verwachte loopsnelheid,
gebaseerd op fundamentele diagrammen die het verband tussen dichtheid en
typische loopsnelheid beschrijven. Door deze verwachte loopsnelheid te gebruiken
bij het plannen, eventueel met extra hoge kosten voor vertraging, kunnen karakters
routes berekenen die een voorkeur geven aan minder drukke gebieden.

Onze experimenten tonen aan dat padplanning gebaseerd op dichtheid kan
leiden tot meer variatie: de menigte verspreidt zich automatisch over meedere
routes. Met de juiste simulatie-instellingen kan dit bovendien de doorstroming in
een omgeving helpen verbeteren.

In hoofdstuk 10 hebben we een generiek raamwerk voor crowdsimulatie beschre-
ven. Het raamwerk bestaat uit vijf niveaus; de middelste drie niveaus (globale
padplanning, het volgen van routes, en lokaal gedrag) zijn geometrisch van aard
en kunnen worden opgelost met behulp van een navigation mesh zoals de ECM.

Onze simulatiesoftware, gebaseerd op de ECM, is gebruikt voor de meeste
experimenten in dit proefschrift. We hebben een aantal implementatiedetails van
deze software beschreven, zoals een opdeling van elke simulatiestap in modulaire
sub-stappen waarmee allerlei soorten algoritmen kunnen worden gecombineerd.

Onze experimenten laten zien dat de software grote menigtes in real-time
kan simuleren. Het ECM-simulatieprogramma is met succes door andere onder-
zoekers en bedrijven gebruikt om scenario’s uit de echte wereld te simuleren,
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zoals de bezoekersstromen voor de Tour de France-start in Utrecht in 2015 en
evacuatiestudies van metrostations voor de Noord-Zuidlijn in Amsterdam.

De datastructuren en algoritmen uit dit proefschrift kunnen ingezet worden om
real-time crowdsimulaties in meerdere toepassingsgebieden te verbeteren. De
meest opvallende onderwerpen voor vervolgonderzoek zijn het automatisch ver-
krijgen van een gelaagde omgeving uit onbewerkte 3D-geometrie op een exacte
manier, het uitbreiden van karakters met meer kunstmatige intelligentie zonder
dat te veel efficiëntie verloren gaat, en evalueren in hoeverre het gedrag in een
simulatie overeenkomt met de werkelijkheid.
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